Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedure for the Preparation of Complexes [AuCl{(η5-C5H3PR2(SO3iPr))Fe(η5-C5H5)}] (R = Ph (2a), p-Tol (2b), Cy (2c))
3.1.1. [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a)
3.1.2. [AuCl{(η5-C5H3P(p-Tol)2(SO3iPr))Fe(η5-C5H5)}] (2b)
3.1.3. [AuCl{(η5-C5H3PCy2(SO3iPr))Fe(η5-C5H5)}] (2c)
3.2. General Procedure for the Addition of Carboxylic Acids to Internal Alkynes Catalyzed by Complex 2a
3.3. Synthesis and Characterization of (Z)-Hex-3-en-3-yl 4-(((Z)-Hex-3-en-3-yl)oxy)benzoate 5af
3.4. X-ray Crystal Structure Determination of Compound 2a
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gooβen, L.J.; Paetzold, J. Decarbonylative Heck olefination of enol esters: Salt-free and environmentally friendly access to vinyl arenes. Angew. Chem. Int. Ed. 2004, 43, 1095–1098. [Google Scholar]
- Geibel, I.; Dierks, A.; Schmidtmann, M.; Christoffers, J. Formation of δ-lactones by cerium catalyzed, Baeyer-Villiger-type coupling of β-oxoesters, enol acetates, and dioxygen. J. Org. Chem. 2016, 81, 7790–7798. [Google Scholar] [CrossRef] [PubMed]
- Geibel, I.; Christoffers, J. Synthesis of 1,4-diketones from β-oxo esters and enol acetates by cerium-catalyzed oxidative umpolung reaction. Eur. J. Org. Chem. 2016, 2016, 918–920. [Google Scholar] [CrossRef]
- Kleman, P.; González-Liste, P.J.; García-Garrido, S.E.; Cadierno, V.; Pizzano, A. Highly enentioselective hydrogenation of 1-alkylvinyl benzoates: A simple, nonenzymatic access to chiral 2-alkanols. Chem. A Eur. J. 2013, 19, 16209–16212. [Google Scholar] [CrossRef] [PubMed]
- León, F.; González-Liste, P.J.; García-Garrido, S.E.; Arribas, I.; Rubio, M.; Cadierno, V.; Pizzano, A. Broad scope synthesis of ester precursors of nonfunctionalized chiral alcohols based on the asymmetric hydrogenation of α,β-dialky, α,β-diaryl, and α-alkyl-β-aryl-vinyl esters. J. Org. Chem. 2017, 82, 5852–5867. [Google Scholar] [CrossRef]
- Jia, J.; Fan, D.; Zhang, J.; Zhang, Z.; Zhang, W. An atropos biphenyl bisphosphine ligand with 2,2′-tert-butylmethylphosphino groups for the rhodium-catalyzed asymmetric hydrogenation of enol esters. Adv. Synth. Catal. 2018, 360, 3793–3800. [Google Scholar] [CrossRef]
- Corey, E.J.; Ghosh, A.K. Manganese (III)-promoted annulation of enol ethers and esters to fused spiro 2-cyclopentenones. Tetrahedron Lett. 1987, 28, 175–178. [Google Scholar] [CrossRef]
- Panda, N.; Mothkuri, R.; Pal, A.; Paital, A.R. Copper-catalyzed synthesis of α-naphthols from enol esters. Adv. Synth. Catal. 2013, 355, 2809–2814. [Google Scholar] [CrossRef]
- Panda, N.; Mishra, P.; Mattan, I. Synthesis of isocoumarins via silver (I)-mediated annulation of enol esters. J. Org. Chem. 2016, 81, 1047–1056. [Google Scholar] [CrossRef]
- Jena, R.K.; Das, U.K.; Ghorai, A.; Bhattacharjee, M. Ruthenium-catalyzed addition of carboxylic acids to propargylic alcohols: An easy route to O-dienyl esters and their tandem atom-transfer radical polymerization. Eur. J. Org. Chem. 2016, 36, 6015–6021. [Google Scholar] [CrossRef]
- Foarta, F.; Landis, C.R. Condensation oligomers with sequence control but without coupling reagents and protecting groups via asymmetric hydroformylation and hydroacyloxylation. J. Org. Chem. 2016, 81, 11250–11255. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Lee, H.-C.; Antonietti, M.; Schmidt, B.V.K.J. Free radical and RAFT polymerization of vinyl esters in metal-organic frameworks. Polym. Chem. 2017, 8, 6204–6208. [Google Scholar] [CrossRef]
- Alonso, F.; Beletskaya, I.; Yus, M. Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem. Rev. 2004, 104, 3079–3160. [Google Scholar] [CrossRef] [PubMed]
- Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: Recent developments and trends. Angew. Chem. Int. Ed. 2004, 43, 3368–3398. [Google Scholar] [CrossRef]
- Hintermann, L. Recent developments in metal-catalyzed additions of oxygen nucleophiles to alkenes and alkynes. Top. Organomet. Chem. 2010, 31, 123–155. [Google Scholar]
- Patil, N.T.; Kavthe, R.D.; Shinde, V.S. Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C-C multiple bonds. Tetrahedron 2012, 68, 8079–8146. [Google Scholar] [CrossRef]
- Bruneau, C. Group 8 metals-catalyzed O-H bond addition to unsaturated molecules. Top. Organomet. Chem. 2013, 43, 203–230. [Google Scholar]
- González-Liste, P.J.; Francos, J.; García-Garrido, S.E.; Cadierno, V. The intermolecular hydro-oxycarbonylation of internal alkynes: Current state of the art. Arkivoc 2018, ii, 17–39. [Google Scholar] [CrossRef]
- Kawatsura, M.; Namioka, J.; Kajita, K.; Yamamoto, M.; Tsuji, H.; Itoh, T. Ruthenium-catalyzed regio- and stereoselective addition of carboxylic acids to aryl and trifluoromethyl group substituted unsymmetrical internal alkynes. Org. Lett. 2011, 13, 3285–3287. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, G.; Ma, S. A novel regio- and stereo-specific hydroacetoxylation reaction of 2-alkynoic acid derivatives. Tetrahedron Lett. 1992, 33, 7205–7206. [Google Scholar] [CrossRef]
- Yin, J.; Bai, Y.; Mao, M.; Zhu, G. Silver-catalyzed regio- and stereoselective addition of carboxylic acids to ynol ethers. J. Org. Chem. 2014, 79, 9179–9185. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Goundry, W.R.F.; Lam, H.W. Palladium-catalyzed hydroacyloxylation of ynamides. Chem. Commun. 2012, 48, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- González-Liste, P.J.; Francos, J.; García-Garrido, S.E.; Cadierno, V. Gold-catalyzed regio- and stereoselective addition of carboxylic acids to iodoalkynes: Access to (Z)-β-iodoenol esters and 1,4-disubstituted (Z)-enynyl esters. J. Org. Chem. 2017, 82, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Chary, B.C.; Kim, S. Gold (I)-catalyzed addition of carboxylic acids to alkynes. J. Org. Chem. 2010, 75, 7928–7931. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Li, Y.; Wu, G.; Cao, Z.; Zhang, L. A general ligand design for gold catalysis allowing ligand-directed anti-nucleophilic attack of alkynes. Nat. Commun. 2014, 5, 3470. [Google Scholar] [CrossRef]
- Dupuy, S.; Gasperini, D.; Nolan, S.P. Highly efficient gold (I)-catalyzed regio- and stereoselective hydrocarboxylation of internal alkynes. ACS Catal. 2015, 5, 6918–6921. [Google Scholar] [CrossRef]
- Chen, J.-F.; Li, C. Enol ester synthesis via cobalt-catalyzed regio- and stereoselective addition of carboxylic acids to alkynes. Org. Lett. 2018, 20, 6719–6724. [Google Scholar] [CrossRef]
- Dixneuf, P.H.; Cadierno, V. (Eds.) Metal-Catalyzed Reactions in Water; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Francos, J.; Cadierno, V. Metal-catalyzed intra- and intermolecular addition of carboxylic acids to alkynes in aqueous media: A review. Catalysts 2017, 7, 328. [Google Scholar] [CrossRef]
- González-Liste, P.J.; García-Garrido, S.E.; Cadierno, V. Gold (I)-catalyzed addition of carboxylic acids to internal alkynes in aqueous medium. Org. Biomol. Chem. 2017, 15, 1670–1679. [Google Scholar] [CrossRef]
- Gorin, D.J.; Sherry, B.D.; Toste, F.D. Ligands effects in homogeneous Au catalysis. Chem. Rev. 2008, 108, 3351–3378. [Google Scholar] [CrossRef]
- Sierra, D.; Contreras, C.; Francos, J.; Gómez, J.; Cadierno, V. Novel ferrocenylphosphino sulfonates: Synthesis, crystal structure and preliminary application as ligands in aqueous catalysis. J. Organomet. Chem. 2018, 854, 106–112. [Google Scholar] [CrossRef]
- Canales, F.; Gimeno, M.C.; Jones, P.G.; Laguna, A.; Sarroca, C. Substitution reaction studies on [Au2Cl2(µ-dppf)] (dppf = 1,1′-bis(diphenylphosphino)ferrocene). Synthesis of the first gold (I) complex with a µ3-2-pyridinethiolate ligand. Inorg. Chem. 1997, 36, 5206–5211. [Google Scholar] [CrossRef]
- Rampazzi, V.; Roger, J.; Amardeil, R.; Penouilh, M.-J.; Richard, P.; Fleurat-Lessard, P.; Hierson, J.-C. Gold (I) complexes of ferrocenyl polyphosphines: Aurophilic gold chloride formation and phosphine-concerted shuttling of a dinuclear [ClAu···AuCl] fragment. Inorg. Chem. 2016, 55, 10907–10921. [Google Scholar] [CrossRef] [PubMed]
- Delpont, N.; Escofet, I.; Pérez-Galán, P.; Spiegl, D.; Raducan, M.; Bour, C.; Sinisi, R.; Echavarren, A. Modular chiral gold (I) phosphite complexes. Catal. Sci. Technol. 2013, 3, 3007–3012. [Google Scholar] [CrossRef]
- Goodwin, J.A.; Aponick, A. Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes. Chem. Commun. 2015, 51, 8730–8741. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2003. [Google Scholar]
- Brandys, M.-C.; Jennings, M.C.; Puddephatt, R.J. Luminescent gold (I) macrocycles with diphosphine and 4, 4´-bipyridyl ligands. J. Chem. Soc. Dalton Trans. 2000, 4601–4606. [Google Scholar] [CrossRef]
- Tsukada, N.; Takahashi, A.; Inoue, Y. Hydrocarboxylation of unactivated internal alkynes with carboxylic acids catalyzed by dinuclear palladium complexes. Tetrahedron Lett. 2011, 52, 248–250. [Google Scholar] [CrossRef][Green Version]
- CrysAlisPro CCD & CrysAlisPro RED; Oxford Diffraction Ltd.: Oxford, UK, 2008.
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Wilson, A.J.C. (Ed.) International Tables for X-ray Crystallography, Volume, C; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Nardelli, M. PARST: A system of FORTRAN routines for calculating molecular structure parameters from results of crystal structure analyses. Comput. Chem. 1983, 7, 95–98. [Google Scholar] [CrossRef]
- Brandenburg, K.; Putz, H. DIAMOND; Crystal Impact GbR: Bonn, Germany, 1999; Available online: http://www.crystalimpact.com/diamond (accessed on 1 September 2019).
Entry | Catalyst | Silver salt | Yield (%)2 |
---|---|---|---|
1 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | ---- | 0 |
2 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | AgPF6 | 79 |
3 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | AgSbF6 | 49 |
4 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | AgNO3 | 87 |
5 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | AgOTs | 86 |
6 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | AgOTf | 82 |
7 | [AuCl{(η5-C5H3PPh2(SO3iPr))Fe(η5-C5H5)}] (2a) | AgOAc | 91 (87)3 |
8 | [AuCl{(η5-C5H3P(p-Tol)2(SO3iPr))Fe(η5-C5H5)}] (2b) | AgOAc | 89 |
9 | [AuCl{(η5-C5H3PCy2(SO3iPr))Fe(η5-C5H5)}] (2c) | AgOAc | 77 |
10 | ----------- | AgOAc | 4 |
Chemical Formula | C25H25O3AuClFePS |
---|---|
fw | 724.74 |
T (K) | 130(1) |
cryst. syst. | monoclinic |
space group | P 21/n |
cryst. size mm3 | 0.24 x 0.10 x 0.07 |
a, Å | 10.15090(10) |
b, Å | 14.6795(2) |
c, Å | 16.9056(2) |
α, deg | 90 |
β, deg | 101.7130(10) |
γ, deg | 90 |
Z | 4 |
V, Å3 | 2466.65(5) |
ρcalcd, g cm–3 | 1.952 |
μ, mm−1 | 18.351 |
F(000) | 1408 |
θ range, deg | 3.0104 to 69.6789 |
index ranges | −10 ≤ h ≤ 12; −16 ≤ k ≤ 17; −20 ≤ l ≤ 18 |
completeness to θmax | 98% |
no. of data collected | 12340 |
no. of unique data | 4556 |
no. of parameters/restrains | 332/0 |
refinement method | full-matrix least-squares on F2 |
goodness of fit on F2 | 1.082 |
R1a [I > 2σ(I)] | 0.0271 |
wR2a [I > 2σ(I)] | 0.0723 |
R1 (all data) | 0.0292 |
wR2 (all data) | 0.0741 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francos, J.; Moreno-Narváez, M.E.; Cadierno, V.; Sierra, D.; Ariz, K.; Gómez, J. Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water. Catalysts 2019, 9, 955. https://doi.org/10.3390/catal9110955
Francos J, Moreno-Narváez ME, Cadierno V, Sierra D, Ariz K, Gómez J. Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water. Catalysts. 2019; 9(11):955. https://doi.org/10.3390/catal9110955
Chicago/Turabian StyleFrancos, Javier, María Esther Moreno-Narváez, Victorio Cadierno, Diego Sierra, Katherine Ariz, and Johana Gómez. 2019. "Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water" Catalysts 9, no. 11: 955. https://doi.org/10.3390/catal9110955
APA StyleFrancos, J., Moreno-Narváez, M. E., Cadierno, V., Sierra, D., Ariz, K., & Gómez, J. (2019). Gold(I) Complexes with Ferrocenylphosphino Sulfonate Ligands: Synthesis and Application in the Catalytic Addition of Carboxylic Acids to Internal Alkynes in Water. Catalysts, 9(11), 955. https://doi.org/10.3390/catal9110955