Facile and Large-scale Synthesis of Defective Black TiO2−x(B) Nanosheets for Efficient Visible-light-driven Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Results and Discussions
2.1. Fabrication of Defective Black TiO2−x(B) Nanosheets
2.2. Material Characterizations
2.3. Photocatalytic Activity for H2 Evolution
3. Experimental
3.1. Chemicals
3.2. Photocatalysts Preparation
3.3. Characterization
3.4. Photocatalytic Activity Tests
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yang, P.; Tarascon, J.M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28, 141–145. [Google Scholar] [CrossRef]
- Wang, P.; Chen, P.; Kostka, A.; Marschall, R.; Wark, M. Control of Phase Coexistence in Calcium Tantalate Composite Photocatalysts for Highly Efficient Hydrogen Production. Chem. Mater. 2013, 25, 4739–4745. [Google Scholar] [CrossRef]
- Zhan, W.; Sun, L.; Han, X. Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks. Nano-Micro Lett. 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Ai, G.; Mo, R.; Li, H.; Zhong, J. Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 2015, 7, 6722–6728. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.; Liu, X.; Li, Z.; Wu, X.; Jiang, J.; Li, M.; Zhu, Q.; Zhou, W. Ti3+ Self-Doped Blue TiO2(B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance. ACS Appl. Mater. Interfaces 2016, 8, 26851–26859. [Google Scholar] [CrossRef]
- Ran, P.; Jiang, L.; Li, X.; Zuo, P.; Li, B.; Li, X.; Cheng, X.; Zhang, J.; Lu, Y. Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO–TiO2−x photocatalysts under visible light. J. Mater. Chem. 2018, 6, 16430–16438. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Li, W.; Fu, H. Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production. Adv. Mater. 2018, 30, 1804282. [Google Scholar] [CrossRef] [PubMed]
- Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J.C.; Lu, G.Q.; Cheng, H. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, J.; Jaroniec, M. Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications. Chem. Mater. 2011, 23, 4085–4093. [Google Scholar] [CrossRef]
- Zhou, W.; Li, W.; Wang, J.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Xing, M.; Zhang, J. A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B Environ. 2014, 160–161, 240–246. [Google Scholar] [CrossRef]
- Chen, X.; Lei, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Ullattil, S.G.; Periyat, P. A ‘one pot’gel combustion strategy towards Ti3+ self-doped ‘black’anatase TiO2−x solar photocatalyst. J. Mater. Chem. A 2016, 4, 5854–5858. [Google Scholar] [CrossRef]
- Santara, B.; Giri, P.; Imakita, K.; Fujii, M. Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: An in situ photoluminescence study. J. Phys. Chem. C 2013, 117, 23402–23411. [Google Scholar] [CrossRef]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, S.; Zboril, R.; Schmuki, P. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2018, 9, 345–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B Environ. 2018, 244, 1021–1064. [Google Scholar] [CrossRef]
- Xiang, G.; Li, T.; Zhuang, J.; Wang, X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010, 46, 6801–6803. [Google Scholar] [CrossRef] [PubMed]
- Zhenyu, S.; Xing, H.; Martin, M.; Wolfgang, S.; Edgar, V. A carbon-coated TiO2(B) nanosheet composite for lithium ion batteries. Chem. Commun. 2014, 50, 5506–5509. [Google Scholar]
- Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D.M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yi, Z.; Zhang, J.; Cai, Z.; Lyu, B.; Yang, J.; Wang, X. In-situ photosynthetic route to tailor point defects in TiO2(B) nanosheets for visible light-driven photocatalytic hydrogen production. ChemCatChem 2019, 11, 4252–4255. [Google Scholar] [CrossRef]
- Kong, X.; Xu, Y.; Cui, Z.; Li, Z.; Liang, Y.; Gao, Z.; Zhu, S.; Yang, X. Defect enhances photocatalytic activity of ultrathin TiO2(B) nanosheets for hydrogen production by plasma engraving method. Appl. Catal. B Environ. 2018, 230, 11–17. [Google Scholar] [CrossRef]
- Wan, N.; Xing, Z.; Kuang, J.; Li, Z.; Yin, J.; Zhu, Q.; Zhou, W. Oxygen vacancy-mediated efficient electron-hole separation for CNS-tridoped single crystal black TiO2(B) nanorods as visible-light-driven photocatalysts. Appl. Surf. Sci. 2018, 457, 287–294. [Google Scholar] [CrossRef]
- Gai, Z.; Cheng, Z.; Wang, X.; Zhao, L.; Yin, N.; Abah, R.; Zhao, M.; Hong, F.; Yu, Z.; Dou, S. A colossal dielectric constant of an amorphous TiO2:(Nb, In) film with low loss fabrication at room temperature. J. Mater. Chem. C 2014, 2, 6790–6795. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale 2011, 3, 2943–2949. [Google Scholar] [CrossRef]
- Huang, N.-P.; Michel, R.; Voros, J.; Textor, M.; Hofer, R.; Rossi, A.; Elbert, D.L.; Hubbell, J.A.; Spencer, N.D. Poly (L-lysine)-g-poly (ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 2001, 17, 489–498. [Google Scholar] [CrossRef]
- Das, J.; Pradhan, S.; Sahu, D.; Mishra, D.; Sarangi, S.; Nayak, B.; Verma, S.; Roul, B. Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter 2010, 405, 2492–2497. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, J.; Cai, Z.; Huang, H.; Huang, T.; Wang, P.; Wang, X. Facile and Large-scale Synthesis of Defective Black TiO2−x(B) Nanosheets for Efficient Visible-light-driven Photocatalytic Hydrogen Evolution. Catalysts 2019, 9, 1048. https://doi.org/10.3390/catal9121048
Xu J, Zhang J, Cai Z, Huang H, Huang T, Wang P, Wang X. Facile and Large-scale Synthesis of Defective Black TiO2−x(B) Nanosheets for Efficient Visible-light-driven Photocatalytic Hydrogen Evolution. Catalysts. 2019; 9(12):1048. https://doi.org/10.3390/catal9121048
Chicago/Turabian StyleXu, JingCheng, JiaJia Zhang, ZhengYang Cai, He Huang, TianHao Huang, Ping Wang, and XianYing Wang. 2019. "Facile and Large-scale Synthesis of Defective Black TiO2−x(B) Nanosheets for Efficient Visible-light-driven Photocatalytic Hydrogen Evolution" Catalysts 9, no. 12: 1048. https://doi.org/10.3390/catal9121048
APA StyleXu, J., Zhang, J., Cai, Z., Huang, H., Huang, T., Wang, P., & Wang, X. (2019). Facile and Large-scale Synthesis of Defective Black TiO2−x(B) Nanosheets for Efficient Visible-light-driven Photocatalytic Hydrogen Evolution. Catalysts, 9(12), 1048. https://doi.org/10.3390/catal9121048