Catalytic Activity of Ni1-xLi2xWO4 Particles for Carbon Dioxide Photoreduction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of NiWO4 and Ni1-xLi2xWO4 Particles
3.2. Characterization of NiWO4 and Ni1-xLi2xWO4 Particles
3.3. CO2 Photoreduction on NiWO4 and Ni1-xLi2xWO4 Particles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, C.H.; Tan, C.S. A Review: CO2 Utilization. AAQR 2014, 14, 480–499. [Google Scholar] [CrossRef]
- Lee, B.Y.; Park, S.H.; Lee, S.C.; Kang, M.; Park, C.H.; Choung, S.J. Optical properties of Pt-TiO2 catalyst and photocatalytic activities for benzene decomposition. Korean J. Chem. Eng. 2003, 20, 812–818. [Google Scholar] [CrossRef]
- Liu, X.; Ye, L.; Liu, S.; Li, Y.; Ji, X. Photocatalytic Reduction of CO2 by ZnO Micro/nanomaterials with Different Morphologies and Ratios of {0001} Facets. Sci. Rep. 2016, 6, 38474. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, Y.; Deng, J.; Wu, Y.; Han, N.; Zha, C.; Li, L.; Li, Y. Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. J. Energy Chem. 2019, 37, 93–96. [Google Scholar] [CrossRef]
- Choi, J.; Song, J.T.; Jang, H.S.; Choi, M.J.; Sim, D.M.; Yim, S.; Lim, H.; Jung, Y.S.; Oh, J. Interfacial Band-Edge Engineered TiO2 Protection Layer on Cu2O Photocathodes for Efficient Water Reduction Reaction. Electron. Mater. Lett. 2017, 13, 57–65. [Google Scholar] [CrossRef]
- Read, C.G.; Park, Y.; Choi, K.S. Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell. J. Phys. Chem. Lett. 2012, 3, 1872–1876. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liaoa, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, X.; Lee, A.F. Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals. J. Mater. Chem. A. 2015, 3, 14487. [Google Scholar] [CrossRef]
- Yadav, H.M.; Kim, J.S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloy. Compd. 2016, 688, 123–129. [Google Scholar] [CrossRef]
- Gomis-Berenguer, A.; Velasco, L.F.; Velo-Gala, I.; Ania, C.O. Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation. J. Colloid Interface Sci. 2017, 490, 879–901. [Google Scholar] [CrossRef] [Green Version]
- Sommers, J.M.; Alderman, N.P.; Viasus, C.J.; Gambarotta, S. Revisiting the behaviour of BiVO4 as a carbon dioxide reduction photo-catalyst. Dalton Trans. 2017, 46, 6404–6408. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, L.; Zhao, P.S.; Yin, J.; Xia, J.; Sheng, A.H.; Wang, F.; Wang, Z.; Yin, C.; Lin, J. Retraction: Synthesis of Fe3+-incorporated open-framework gallium borate catalyst for photocatalytic CO2 reduction driven by visible light irradiation. Inorg. Chem. Front. 2019, 6, 632. [Google Scholar] [CrossRef]
- Vignesh, K.; Kang, M. Facile synthesis, characterization and recyclable photocatalytic activity of Ag2WO4@g-C3N4, Mater. Sci. Eng. B. 2015. Sci. Eng. B. 2015, 199, 30–36. [Google Scholar] [CrossRef]
- Lee, H.U.; Lee, S.C.; Won, J.; Son, B.C.; Choi, S.; Kim, Y.; Park, S.Y.; Kim, H.S.; Lee, Y.C.; Lee, J. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci. Rep. 2015, 5, 8691. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Rahimi-Nasrabadi, M.; Khalilian-Shalamzari, M.; Zahedi, M.M.; Hajimirsadeghi, S.S.; Omrani, I. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles. Appl. Surf. Sci. 2012, 263, 745–752. [Google Scholar] [CrossRef]
- Mani, S.; Vediyappan, V.; Chen, S.M.; Madhu, R.; Pitchaimani, V.; Chang, J.Y.; Liu, S.B. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Sci. Rep. 2016, 6, 24128. [Google Scholar] [CrossRef] [PubMed]
- Sinelnikov, B.M.; Sokolenko, E.V.; Zvekov, V.Y. The Nature of Green Luminescence Centers in Scheelite. J. Inorg. Mater. 1996, 32, 999–1001. [Google Scholar]
- He, H.Y. Luminescence properties of NiWO4 powders and films prepared with novel methods. Mater. Res. Innov. 2008, 12, 138–141. [Google Scholar] [CrossRef]
- Bhattacharya, A.K.; Biswas, R.G.; Hartridge, A. Environment sensitive impedance spectroscopy and dc conductivity measurements on NiWO4. J. Mater. Sci. 1997, 32, 353–356. [Google Scholar]
- Pandey, P.K.; Bhave, N.S.; Kharat, R.B. Structural, optical, electrical and photovoltaic electrochemical characterization of spray deposited NiWO4 thin films. Electrochim. Acta. 2006, 51, 4659–4664. [Google Scholar] [CrossRef]
- Ke, J.; Younis, M.A.; Kong, Y.; Zhou, H.; Liu, J.; Lei, L.; Hou, Y. Nanostructured Ternary Metal Tungstate-Based Photocatalysts for Environmental Purification and Solar Water Splitting: A Review. Nanomicro Lett. 2018, 10, 69. [Google Scholar] [CrossRef]
- Opoku, F.; Govender, K.K.; Sittert, C.G.C.E.; Govender, P.P. Charge transport, interfacial interactions and synergistic mechanisms in BiNbO4/MWO4 (M = Zn and Cd) heterostructures for hydrogen production: Insights from a DFT+U study. Phys.Chem.Chem.Phys. 2017, 19, 28401. [Google Scholar] [CrossRef]
- Do, J.Y.; Chava, R.K.; Mandari, K.K.; Park, N.K.; Ryu, H.J.; Seo, M.W.; Lee, D.; Senthil, T.S.; Kang, M. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl. Catal. B-Environ. 2018, 237, 895–910. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Birnie, D., III; Kingery, W.D. Physical Ceramics: Principles for Ceramic Science and Engineering, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1997; Volume 1, pp. 102–107, ISBN-10: 0471598739. [Google Scholar]
- Rico, J.L.; Albiter, M.; Espino, J.; Hargreaves, J.S.J.; Ostroumov, M.; Salcedo, L.I.; Wilson, K. Synthesis and ammonolysis of nickel and cobalt tungstates and their characterization. J. Saudi Chem. Soc. 2016, 20, 405–410. [Google Scholar] [CrossRef]
- Jacob, R.; Nair, H.G.; Isac, J. Structural and Morphological Studies of Nanocrystalline Ceramic BaSr0.9Fe0.1TiO4. ILCPA 2014, 41, 100–117. [Google Scholar] [CrossRef]
- Zhou, W.; Fu, H. Defect-mediated electron–hole separation in semiconductor photocatalysis. Inorg. Chem. Front. 2018, 5, 1240–1254. [Google Scholar] [CrossRef]
- Chen, S.; Yang, G.; Jia, Y.; Zheng, H. Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J. Mater. Chem. A. 2017, 5, 1028–1034. [Google Scholar] [CrossRef]
- Sundberg, J.; Lindblad, R.; Gorgoi, M.; Rensmo, H.; Jansson, U.; Lindblad, A. Understanding the effects of sputter damage in W–S thin films by HAXPES. Appl. Surf. Sci. 2014, 305, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, A.; Aslam, M. Hydrogen-incorporated ZnO nanowire films: Stable and high electrical conductivity. J. Phys. D: Appl. Phys. 2013, 46, 485104. [Google Scholar] [CrossRef]
- Xu, J.; Lin, F.; Nordlund, D.; Crumlin, E.J.; Wang, F.; Bai, J.; Doeff, M.M.; Tong, W. Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2. Chem. Commun. 2016, 52, 4239–4242. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.M.; Ferreira, J.M.; Silva, M.R.S.; Souza, S.C.; Vieira, F.T.G.; Longo, E.; Souza, A.G.; Santos, I.M.G. Influence of the thermal treatment in the crystallization of NiWO4 and ZnWO4. J. Therm. Anal. Calorim. 2009, 97, 167–172. [Google Scholar] [CrossRef]
- Valente, J.S.; Orta, M.V.; Herrera, H.A.; Solórzano, R.Q.; Angel, P.; Salgado, J.R.; López, J.R.M. Controlling the redox properties of nickel in NiO/ZrO2 catalysts synthesized by sol–gel. Catal. Sci. Technol. 2018, 8, 4070. [Google Scholar] [CrossRef]
- Babu, B.; Sundari, G.R.; Ravindranadh, K.; Yadav, M.R.; Ravikumar, R.V.S.S.N. Structural, spectroscopic and magnetic characterization of undoped, Ni2+ doped ZnO nanopowders. J. Magn. Magn. Mater. 2014, 372, 79–85. [Google Scholar] [CrossRef]
- Zawawi, S.M.M.; Yahya, R.; Hassan, A.; Mahmud, H.N.M.E.; Daud, M.N. Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Cent. J. 2013, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Harshan, H.; Priyanka, K.P.; Sreedevi, A.; Jose, A.; Varghese, T. Structural, optical and magnetic properties of nanophase NiWO4 for potential applications. Eur. Phys. J. B. 2018, 91, 1–10. [Google Scholar] [CrossRef]
- Xiong, G.; Pal, U.; Serrano, J.G. Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J. Appl. Phys. 2007, 101, 024317. [Google Scholar] [CrossRef]
- Taira, N.; Saitoh, M.; Hashimoto, S.; Moonc, H.R.; Yoon, K.B. Effect of electron-acceptor strength of zeolite on the luminescence decay rate of Ru(bpy)32+ incorporated within zeolites. Photochem. Photobiol. Sci. 2006, 5, 822–827. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Q.; Wang, Z.; Liu, Y.; Xin, J.; Zhang, J.; Hao, Y.; Li, L. Enhanced visible-light photocatalytic activity and photostability of Ag3PO4/Bi2WO6 heterostructures toward organic pollutant degradation and plasmonic Z-scheme mechanism. RSC Adv. 2018, 8, 15853–15862. [Google Scholar] [CrossRef]
- Peng, C.; Reid, G.; Wang, H.; Hu, P. Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. J. Chem. Phys. 2017, 147, 030901. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Do, J.Y.; Kim, R.; Son, N.; Park, N.-K.; Ryu, H.-J.; Seo, M.W.; Chi, J.; Youn, Y.-S.; Kang, M. Catalytic Activity of Ni1-xLi2xWO4 Particles for Carbon Dioxide Photoreduction. Catalysts 2019, 9, 467. https://doi.org/10.3390/catal9050467
Shin J, Do JY, Kim R, Son N, Park N-K, Ryu H-J, Seo MW, Chi J, Youn Y-S, Kang M. Catalytic Activity of Ni1-xLi2xWO4 Particles for Carbon Dioxide Photoreduction. Catalysts. 2019; 9(5):467. https://doi.org/10.3390/catal9050467
Chicago/Turabian StyleShin, Jongmin, Jeong Yeon Do, Raeyeong Kim, Namgyu Son, No-Kuk Park, Ho-Jung Ryu, Myung Won Seo, Junhwa Chi, Young-Sang Youn, and Misook Kang. 2019. "Catalytic Activity of Ni1-xLi2xWO4 Particles for Carbon Dioxide Photoreduction" Catalysts 9, no. 5: 467. https://doi.org/10.3390/catal9050467
APA StyleShin, J., Do, J. Y., Kim, R., Son, N., Park, N.-K., Ryu, H.-J., Seo, M. W., Chi, J., Youn, Y.-S., & Kang, M. (2019). Catalytic Activity of Ni1-xLi2xWO4 Particles for Carbon Dioxide Photoreduction. Catalysts, 9(5), 467. https://doi.org/10.3390/catal9050467