The Characterization and Application of Two Liquid Crystal Mixtures in the Low THz Region
Abstract
:1. Introduction
2. Materials and Methods
3. Applications of Devices for Terahertz Continuous Wave Modulation
4. Experimental Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boulogeorgos, A.A.A.; Alexiou, A.; Merkle, T.; Schubert, C.; Elschner, R.; Katsiotis, A.; Stavrianos, P.; Kritharidis, D.; Chartsias, P.K.; Kokkoniemi, J.; et al. Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G. IEEE Commun. Mag. 2018, 56, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward real-time terahertz imaging. Adv. Opt. Photonics 2018, 10, 843–938. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.P.; Liu, Y.; Fu, W.L.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Tang, M.Q.; Huang, J.Q.; Liu, W.; Dong, J.Y.; Chen, X.P.; Fu, W.L.; Zhang, Y. The medical application of terahertz technology in non-invasive detection of cells and tissues: Opportunities and challenges. RSC Adv. 2019, 9, 9354–9363. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.L.; Chu, F.; Dou, H.; Li, L.; Wang, Q.H. Electrically Tunable-Focusing Liquid Crystal Microlens Array with Simple Electrode. Crystals 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.Q.; Zhang, D.N.; Li, Y.P.; Zhang, L.; Jin, L.C.; Wen, T.L.; Bai, F.M.; Zhang, H.W. High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO2/Si Trilayer Heterojunctions. Nanoscale Res. Lett. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Wei, X.; Zhang, G. Tunable and Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Metal-Graphene Terahertz Metamaterial. Crystals 2019, 9, 632. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.C.; Dai, P.H.; Wu, J.B.; Jin, B.B.; Wen, Q.Y.; Zhu, G.H.; Shen, Z.; Zhang, C.H.; Kang, L.; Xu, W.W.; et al. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface. Opt. Express 2017, 25, 17322–17328. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Wang, L.; Zhang, Y.X.; Qiao, S.; Liang, S.X.; Zhou, T.C.; Zhang, X.L.; Guo, X.Q.; Feng, Z.H.; Lan, F.; et al. High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface. Nano Lett. 2019, 19, 7588–7597. [Google Scholar] [CrossRef]
- Shen, Z.X.; Zhou, S.H.; Ge, S.J.; Duan, W.; Ma, L.L.; Lu, Y.Q.; Hu, W. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt. Express 2019, 27, 8800–8807. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Olifierczuk, M.; Parka, J.; Wrobel, J. Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal. Appl. Phys. Lett. 2014, 105, 022908. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Jaroszewicz, L.; Olifierczuk, M.; Parka, J. Experimental study on terahertz metamaterial embedded in nematic liquid crystal. Appl. Phys. Lett. 2015, 106, 092905. [Google Scholar] [CrossRef]
- Li, J.; Chu, D. Liquid Crystal-Based Enclosed Coplanar Waveguide Phase Shifter for 54–66 GHz Applications. Crystals 2019, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Chen, P.; Ge, S.J.; Liang, X.; Hu, W. A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. Crystals 2019, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tian, H.; Wang, Y.; Li, X.Y.; Cao, Y.J.; Li, L.; Liu, J.L.; Zhou, Z.X. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial. Opt. Express 2018, 26, 5769–5776. [Google Scholar] [CrossRef]
- Yan, D.X.; Li, J.S.; Jin, L.F. Light-controlled tunable terahertz filters based on photoresponsive liquid crystals. Laser Phys. 2019, 29, 025401. [Google Scholar] [CrossRef]
- Yang, J.; Xia, T.Y.; Jing, S.C.; Deng, G.S.; Lu, H.B.; Fang, Y.; Yin, Z.P. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal. J. Infrared Millim. Terahertz Waves 2018, 39, 439–446. [Google Scholar] [CrossRef]
- Du, Y.; Tian, H.; Cui, X.; Wang, H.; Zhou, Z.X. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes. J. Mater. Chem. C 2016, 4, 4138–4142. [Google Scholar] [CrossRef]
- Yuan, Y.H.; He, J.A.; Liu, J.S.; Yao, J.Q. Electrically controlled broadband THz switch based on liquid-crystal-filled multi-layer metallic grating structures. J. Phys. Conf. Ser. 2011, 276. [Google Scholar] [CrossRef]
- Wang, R.X.; Li, L.; Liu, J.L.; Yan, F.; Tian, F.J.; Tian, H.; Zhang, J.Z.; Sun, W.M. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal. Opt. Express 2017, 25, 32280–32289. [Google Scholar] [CrossRef]
- Ge, S.J.; Chen, P.; Shen, Z.X.; Sun, W.F.; Wang, X.K.; Hu, W.; Zhang, Y.; Lu, Y.Q. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express 2017, 25, 12349–12356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.F.; Tan, N.; Pivnenko, M.; Sibik, J.; Zeitler, J.A.; Chu, D.P. High-birefringence nematic liquid crystal for broadband THz applications. Liq. Cryst. 2016, 43, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Vieweg, N.; Jansen, C.; Shakfa, M.K.; Scheller, M.; Krumbholz, N.; Wilk, R.; Mikulics, M.; Koch, M. Molecular properties of liquid crystals in the terahertz frequency range. Opt. Express 2010, 18, 6097–6107. [Google Scholar] [CrossRef] [PubMed]
- Vieweg, N.; Shakfa, M.K.; Koch, M. BL037: A nematic mixture with high terahertz birefringence. Opt. Commun. 2011, 284, 1887–1889. [Google Scholar] [CrossRef]
- Wang, L.; Lin, X.W.; Liang, X.; Wu, J.B.; Hu, W.; Zheng, Z.G.; Jin, B.B.; Qin, Y.Q.; Lu, Y.Q. Large birefringence liquid crystal material in terahertz range. Opt. Mater. Express 2012, 2, 1314–1319. [Google Scholar] [CrossRef]
- Reuter, M.; Vieweg, N.; Fischer, B.M.; Mikulicz, M.; Koch, M.; Garbat, K.; Dąbrowski, R. Highly birefringent, low-loss liquid crystals for terahertz applications. APL Mater. 2013, 1, 012107. [Google Scholar] [CrossRef]
- Zheng, A.D.; Xia, X.; Gao, S.; Yang, J.; Lu, H.B.; Deng, G.S.; Yin, Z.P. Dielectric properties of two high birefringence liquid crystal mixtures in the Sub-THz band. Liq. Cryst. 2019, 47. [Google Scholar] [CrossRef]
- Yang, J.; Wang, P.; Shi, T.; Gao, S.; Lu, H.B.; Yin, Z.P.; Lai, W.E.; Deng, G.S. Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial. Opt. Express 2019, 27, 27039–27045. [Google Scholar] [CrossRef]
- Lapanik, V.; Sasnouski, G.; Timofeev, S.; Shepeleva, E.; Evtyushkin, G.; Haase, W. New highly anisotropic liquid crystal materials for high-frequency applications. Liq. Cryst. 2018, 45, 1242–1249. [Google Scholar] [CrossRef]
LC | no | Δn | TN-I (°C) | ε// | Δɛ | K11(PN) | K33(PN) |
---|---|---|---|---|---|---|---|
E7 | 1.517 | 0.224 | 58.2 | 16.7 | 11.1 | 7.2 | 18.1 |
E7-2 | 1.522 | 0.260 | 72.2 | 15.4 | 10.1 | 7.1 | 11.3 |
S200 | 1.515 | 0.266 | 101.1 | 19.8 | 14.9 | 8.4 | 12.3 |
S200-2 | 1.516 | 0.298 | 114.9 | 16.0 | 13.0 | 7.1 | 3.9 |
Frequency (GHz) | ΔT | MD | IL (dB) | Δφ (°) |
---|---|---|---|---|
296 | 0.27 < 0.42 | 0.39 < 0.53 | 1.65 > 1.01 | 69.1 : 46.5 |
297 | 0.35 < 0.45 | 0.50 < 0.58 | 1.50 > 1.15 | 54.9 : 46.5 |
300 | 0.47 < 0.56 | 0.69 < 0.76 | 1.54 > 1.51 | 59.5 : 25.5 |
303 | 0.49 < 0.55 | 0.78 < 0.83 | 1.94 > 1.70 | 46.0 : −4.7 |
305 | 0.45 < 0.51 | 0.81 < 0.84 | 2.52 > 2.08 | 14.8 : −10.8 |
306 | 0.44 < 0.48 | 0.83 > 0.81 | 0.26 > 0.29 | 24.2 : −34.3 |
307 | 0.40 < 0.43 | 0.82 > 0.79 | 0.31 > 2.69 | 1.70 : −39.5 |
312 | 0.23 > 0.25 | 0.77 > 0.61 | 5.38 > 4.50 | −42.0 : −80.0 |
Frequency (GHz) | ΔT | MD | IL (dB) | Δφ (°) |
---|---|---|---|---|
296 | 0.40 < 0.52 | 0.56 < 0.67 | 1.94 >1.20 | 59.6 : 39.2 |
297 | 0.42 < 0.55 | 0.61 < 0.72 | 2.05 > 1.23 | 40.8 : 36.1 |
300 | 0.47 < 0.56 | 0.69 < 0.76 | 1.54 > 1.51 | 30.7 : 20.8 |
303 | 0.49 < 0.55 | 0.78 < 0.83 | 1.94 > 1.70 | 2.2 : −10.7 |
305 | 0.45 < 0.51 | 0.81 < 0.84 | 2.52 > 2.08 | 19.3 : −16.9 |
306 | 0.44 < 0.48 | 0.83 > 0.81 | 0.26 > 0.29 | −10.6 : −31.3 |
310 | 0.40 < 0.43 | 0.82. > 0.79 | 0.31 > 2.69 | −74.3 : −82.5 |
312 | 0.23 > 0.25 | 0.77 > 0.61 | 5.38 > 4.50 | −56.8 : −65.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, A.; Chu, X.; Wang, P.; Wang, P.; Gao, S.; Yang, J.; Lu, H.; Deng, G.; Yin, Z. The Characterization and Application of Two Liquid Crystal Mixtures in the Low THz Region. Crystals 2020, 10, 99. https://doi.org/10.3390/cryst10020099
Zheng A, Chu X, Wang P, Wang P, Gao S, Yang J, Lu H, Deng G, Yin Z. The Characterization and Application of Two Liquid Crystal Mixtures in the Low THz Region. Crystals. 2020; 10(2):99. https://doi.org/10.3390/cryst10020099
Chicago/Turabian StyleZheng, Andong, Xiujun Chu, Pengjun Wang, Peng Wang, Sheng Gao, Jun Yang, Hongbo Lu, Guangsheng Deng, and Zhiping Yin. 2020. "The Characterization and Application of Two Liquid Crystal Mixtures in the Low THz Region" Crystals 10, no. 2: 99. https://doi.org/10.3390/cryst10020099
APA StyleZheng, A., Chu, X., Wang, P., Wang, P., Gao, S., Yang, J., Lu, H., Deng, G., & Yin, Z. (2020). The Characterization and Application of Two Liquid Crystal Mixtures in the Low THz Region. Crystals, 10(2), 99. https://doi.org/10.3390/cryst10020099