Semipolar { } GaN Edge-Emitting Laser Diode on Epitaxial Lateral Overgrown Wing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Handmade Facet Formation
3.2. On-Wafer RIE Facet Formation
4. Conclusions
5. Patent Applications
- i.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li; Daniel A. Cohen. Method of removing a substrate. US. Patent US20200194615A1, 18 June 2020.
- ii.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li; Daniel A. Cohen. Method of removing a substrate. EP. Patent EP3619748A1, 11 March 2020.
- iii.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li; Daniel A. Cohen. Method for removing substrate. CN. Patent CN110603651A, 20 December 2019.
- iv.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li; Daniel A. Cohen. How to remove the substrate. JP. Patent JP2020519026A, 25 June 2020.
- v.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Method of removing a substrate with a cleaving technique. US. Patent US20200203228A1, 25 June 2020.
- vi.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Method of removing a substrate with a cleaving technique. EP. Patent EP3682465A1, 22 July 2020.
- vii.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Method for removing substrate by cutting technology. CN. Patent CN111095483A, 1 May 2020.
- viii.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. How to remove the substrate using cleavage technique. JP. Patent JP2020534687A, 26 November 2020.
- ix.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Method of fabricating non-polar and semipolar devices using epitaxial lateral overgrowth. US. Patent US20210013365A1, 14 January 2021.
- x.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Method of fabricating non-polar and semipolar devices using epitaxial lateral overgrowth. EP. Patent EP3776672A1, 17 February 2021.
- xi.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Method of fabricating non-polar and semipolar devices using epitaxial lateral overgrowth. CN. Patent CN112219287A, 12 January 2021.
- xii.
- Takeshi Kamikawa; Srinivas Gandrothula; Hongjian Li. Non-polar and semipolar device fabrication method using epitaxial transverse overgrowth. JP. Patent JP2021519743A, 12 August 2021.
- xiii.
- Takeshi Kamikawa; Srinivas Gandrothula. Method for dividing a bar of one or more devices. US. Patent US20210090885A1, 25 March 2021.
- xiv.
- Takeshi Kamikawa; Srinivas Gandrothula. Method for dividing a bar of one or more devices. EP. Patent EP3794632A1, 24 March 2021.
- xv.
- Takeshi Kamikawa; Srinivas Gandrothula. Method for dividing one or more stripes of devices. CN. Patent CN112154533A, 29 December 2020.
- xvi.
- Takeshi Kamikawa; Srinivas Gandrothula. How to split a bar with one or more devices. JP. Patent JP2021525452A, 24 September 2021.
- xvii.
- Srinivas Gandrothula; Takeshi Kamikawa. Method of removing semiconducting layers from a semiconducting substrate. US. Patent US20210242086A1, 5 August 2021.
- xviii.
- Srinivas Gandrothula; Takeshi Kamikawa. Method of removing semiconducting layers from a semiconducting substrate. EP. Patent EP3803980A1, 14 April 2021.
- xix.
- Srinivas Gandrothula; Takeshi Kamikawa. Method for removing semiconducting layer from a semiconductor substrate. CN. Patent CN112204754A, 8 January 2021.
- xx.
- Srinivas Gandrothula; Takeshi Kamikawa. How to remove the semiconductor layer from the semiconductor substrate. JP. Patent JP2021525007A, 16 September 2021.
- xxi.
- Takeshi Kamikawa; Srinivas Gandrothula. Method of obtaining a smooth surface with epitaxial lateral overgrowth. US. Patent WO2020092722A1, 7 May 2020.
- xxii.
- Takeshi Kamikawa; Srinivas Gandrothula. Method of obtaining a smooth surface with epitaxial lateral overgrowth. EP. Patent EP3874544A1, 8 September 2021.
- xxiii.
- Takeshi Kamikawa; Srinivas Gandrothula. Method for obtaining smooth surfaces by epitaxial lateral overgrowth. CN. Patent CN113287205A, 20 August 2021.
- xxiv.
- Takeshi Kamikawa; Srinivas Gandrothula; Masahiro Araki. Method for removal of devices using a trench. US. Patent WO2020150511A1, 23 July 2020.
- xxv.
- Takeshi Kamikawa; Srinivas Gandrothula; Masahiro Araki. Method for removing device using trench. CN. Patent CN113439322A, 24 September 2021.
- xxvi.
- Takeshi Kamikawa; Srinivas Gandrothula. Method for flattening a surface on an epitaxial lateral growth layer. US. Patent WO2020180785A1, 10 September 2020.
- xxvii.
- Takeshi Kamikawa; Masahiro Araki; Srinivas Gandrothula. Substrate for removal of devices using void portions. US. Patent WO2020186205A1, 17 September 2020.
- xxviii.
- Takeshi Kamikawa; Srinivas Gandrothula; Masahiro Araki. Method for removing a bar of one or more devices using supporting plates. US. Patent WO2020186080A1, 17 September 2020.
- xxix.
- Takeshi Kamikawa; Srinivas Gandrothula; Masahiro Araki. Method of fabricating a resonant cavity and distributed Bragg reflector mirrors for a vertical cavity surface emitting laser on a wing of an epitaxial lateral overgrowth region. US. Patent WO2021081308A1, 29 April 2021.
- xxx.
- Takeshi Kamikawa; Masahiro Araki; Srinivas Gandrothula. Method for removing a device using an epitaxial lateral overgrowth technique. US. Patent WO2021212098A1, 21 October 2021.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y. InGaN-based multiquantum-well-structure laser diodes. Jpn. J. Appl. Phys. 1996, 35, L74–L76. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 1998, 72, 211. [Google Scholar] [CrossRef] [Green Version]
- LED Professional. Available online: https://www.led-professional.com/resources-1/articles/professor-shuji-nakamura (accessed on 12 April 2017).
- Pourhashemi, A.; Farrell, R.M.; Hardy, M.T.; Hsu, P.S.; Kelchner, K.M.; Speck, J.S.; Denbaars, S.P.; Nakamura, S. Pulsed high-power AlGaN-cladding-free blue laser diodes on semipolar (20-2-1) GaN substrates. Appl. Phys. Lett. 2013, 103, 151112. [Google Scholar] [CrossRef]
- Partovi, A.; Peale, D.; Wuttig, M.; Murray, C.A.; Zydzik, G.; Hopkins, L.; Baldwin, K.; Hobson, W.S.; Wynn, J.; Lopata, J.; et al. High-power laser light source for near-field optics and its application to high-density optical data storage. Appl. Phys. Lett. 1999, 75, 1515–1517. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, K.; Kasugai, H.; Takizawa, T.; Yoshida, S.; Yamanaka, K.; Katayama, T.; Okuyama, K.; Shiraishi, S.; Mizuyama, Y. A 30 W Pure Blue Emission with NUV Laser-Diode-Pumped Phosphor for High-Brightness Projectors. Soc. Inf. Disp. Int. Symp. Dig. Tech. 2013, 44, 832–835. [Google Scholar] [CrossRef]
- Denault, K.A.; Cantore, M.; Nakamura, S.; Denbaars, S.; Seshadri, R. Efficient and stable laser-driven white lighting. AIP Adv. 2013, 3, 072107. [Google Scholar] [CrossRef]
- Shen, C.; Ng, T.K.; Leonard, J.T.; Pourhashemi, A.; Nakamura, S.; Denbaars, S.; Speck, J.S.; Alyamani, A.Y.; El-Desouki, M.M.; Ooi, B.S. High-brightness semipolar (2021) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. Opt. Lett. 2016, 41, 2608–2611. [Google Scholar] [CrossRef]
- Murayama, M.; Nakayama, Y.; Yamazaki, K.; Hoshina, Y.; Watanabe, H.; Fuutagawa, N.; Kawanishi, H.; Uemura, T.; Narui, H. Watt-Class Green (530 nm) and Blue (465 nm) Laser Diodes. Phys. Status Solidi A 2018, 215, 1700513. [Google Scholar]
- Masui, S.; Nakatsu, Y.; Kasahara, D.; Nagahama, S.-I. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII 2017, Volume 10104, 101041H. [Google Scholar] [CrossRef]
- Avramescu, A.; Hager, T.; Bernhard, S.; Brüderl, G.; Wurm, T.; Somers, A.; Eichler, C.; Vierheilig, C.; Löffler, A.; Ristic, J. High Power Blue and Green Laser Diodes and Their Applications. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 457–458. [Google Scholar]
- Chichibu, S.; Azuhata, T.; Sota, T.; Nakamura, S. Spontaneous emission of localized excitons in InGaN single and multi quantum well structures. Appl. Phys. Lett. 1996, 69, 4188. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.; Akasaki, I. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells. Jpn. J. Appl. Phys. 1997, 36, L382–L385. [Google Scholar] [CrossRef]
- Adachi, M. InGaN based green laser diodes on semipolar GaN substrate. Jpn. J. Appl. Phys. 2014, 53. [Google Scholar] [CrossRef] [Green Version]
- Enya, Y.; Yoshizumi, Y.; Kyono, T.; Akita, K.; Ueno, M.; Adachi, M.; Sumitomo, T.; Tokuyama, S.; Ikegami, T.; Katayama, K. 531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates. Appl. Phys. Express 2009, 2, 082101. [Google Scholar] [CrossRef]
- Lee, C.; Zhang, C.; Cantore, M.; Farrell, R.; Oh, S.H.; Margalith, T.; Speck, J.S.; Nakamura, S.; Bowers, J.E.; DenBaars, S.P. 2.6 GHz high-speed visible light communication of 450 nm GaN laser diode by direct modulation. Opt. Express 2015, 23, 228–229. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi A 2019, 216, 1800628. [Google Scholar] [CrossRef] [Green Version]
- Hardy, M.T.; Feezell, D.F.; Denbaars, S.; Nakamura, S. Group III-nitride lasers: A materials perspective. Mater. Today 2011, 14, 408–415. [Google Scholar] [CrossRef]
- Zhang, H.; Cohen, D.A.; Chan, P.; Wong, M.S.; Mehari, S.; Becerra, D.L.; Nakamura, S.; Denbaars, S. Continuous-wave operation of a semipolar InGaN distributed-feedback blue laser diode with a first-order indium tin oxide surface grating. Opt. Lett. 2019, 44, 3106–3109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Daniel, A.C.; Chan, P.; Wong, M.S.; Li, P.; Li, H.; Nakamura, S.; DenBaars, S.P. High performance of a semipolar InGaN laser with a phase-shifted embedded hydrogen silsesquioxane (HSQ) grating. Opt. Lett. 2020, 45, 5844. [Google Scholar] [CrossRef] [PubMed]
- Kamikawa, T.; Gandrothula, S.; Araki, M.; Li, H.; Oliva, V.B.; Wu, F.; Cohen, D.; Speck, J.S.; Denbaars, S.; Nakamura, S. Realization of thin-film m-plane InGaN laser diode fabricated by epitaxial lateral overgrowth and mechanical separation from a reusable growth substrate. Opt. Express 2019, 27, 24717–24723. [Google Scholar] [CrossRef] [PubMed]
- Gandrothula, S.; Kamikawa, T.; Araki, M.; Cohen, D.A.; Speck, J.S.; Nakamura, S.; Denbaars, S. An approach to remove homoepitaxially grown GaN layers by cleavage from the substrate surface. Appl. Phys. Express 2020, 13, 041003. [Google Scholar] [CrossRef]
- Gandrothula, S.; Kamikawa, T.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Study of surface roughness of lifted-off epitaxial lateral overgrown GaN layers for the n-DBR mirror of a III-nitride vertical-cavity surface emitting laser. Appl. Phys. Express 2021, 14, 031002. [Google Scholar] [CrossRef]
- Gandrothula, S.; Kamikawa, T.; Shapturenka, P.; Anderson, R.; Wong, M.; Zhang, H.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Optical and electrical characterizations of micro-LEDs grown on lower defect density epitaxial layers. Appl. Phys. Lett. 2021, 119, 142103. [Google Scholar] [CrossRef]
- Kamikawa, T.; Gandrothula, S.; Li, H.; Bonito-Olivia, V.; Wu, F.; Cohen, D.; Speck, J.S.; Denbaars, S.P.; Nakamura, S. New fabrication method of InGaN laser diode by epitaxial lateral overgrowth and cleavable technique from free-standing non- and semi-polar GaN substrate. In Gallium Nitride Materials and Devices XVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11686, p. 116860M. [Google Scholar]
- Semiconductor Today. Available online: http://www.semiconductor-today.com/news_items/2020/may/ucsb-150520.shtml (accessed on 15 May 2020).
- Compound Semiconductor. Available online: https://www.publishing.ninja/V4/page/10557/415/6/1 (accessed on 5 June 2020).
- Advances in Engineering. Available online: https://advanceseng.com/potential-path-realize-gan-vcsels-epitaxial-lateral-overgrowth/ (accessed on 16 October 2021).
- Kamei, T.; Kamikawa, T.; Araki, M.; DenBaars, S.P.; Nakamura, S.; Bowers, J.E. Research toward a Heterogeneously Integrated InGaN Laser on Silicon. Phys. Status Solidi A 2019, 217, 1900770. [Google Scholar] [CrossRef] [Green Version]
- Durnev, M.; Omelchenko, A.V.; Yakovlev, E.V.; Evstratov, I.Y.; Karpov, S.Y. Indium incorporation and optical transitions in InGaN bulk materials and quantum wells with arbitrary polarity. Appl. Phys. Lett. 2010, 97, 051904. [Google Scholar] [CrossRef]
- Arefin, R.; You, W.; Ramachandra, S.H.; Hasan, S.M.N.; Jung, H.; Awwad, M.; Arafin, S. Theoretical Analysis of Tunnel-Injected Sub-300 nm AlGaN Laser Diodes. IEEE J. Quantum Electron. 2020, 56, 2001110. [Google Scholar] [CrossRef]
- Wong, M.S.; Melchert, D.; Haggmark, M.; Myers, D.; Lee, C.; Grandrothula, S.; de Vries, M.; Gianola, D.; Begley, M.; Magarlith, T.; et al. Acousto-fluidic assembly of III-nitride micro-light-emitting diodes with magnetic alignment. In Light-Emitting Devices, Materials, and Applications XXV; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11706, p. 1170607. [Google Scholar]
- Hamdy, S.W.; Young, E.C.; Alhassan, A.I.; Becerra, D.L.; Denbaars, S.; Speck, J.S.; Nakamura, S. Efficient tunnel junction contacts for high-power semipolar III-nitride edge-emitting laser diodes. Opt. Express 2019, 27, 8327–8334. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.S.; Back, J.; Hwang, D.; Lee, C.; Wang, J.; Gandrothula, S.; Margalith, T.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Demonstration of high wall-plug efficiency III-nitride micro-light-emitting diodes with MOCVD-grown tunnel junction contacts using chemical treatments. Appl. Phys. Express 2021, 14, 086502. [Google Scholar] [CrossRef]
- Kuritzky, L.Y.; Becerra, D.L.; Abbas, A.S.; Nedy, J.; Nakamura, S.; Denbaars, S.; Cohen, D.A. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN. Semicond. Sci. Technol. 2016, 31, 075008. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandrothula, S.; Zhang, H.; Shapturenka, P.; Anderson, R.; Wong, M.S.; Li, H.; Kamikawa, T.; Nakamura, S.; DenBaars, S.P.
Semipolar {
Gandrothula S, Zhang H, Shapturenka P, Anderson R, Wong MS, Li H, Kamikawa T, Nakamura S, DenBaars SP.
Semipolar {
Gandrothula, Srinivas, Haojun Zhang, Pavel Shapturenka, Ryan Anderson, Matthew S. Wong, Hongjian Li, Takeshi Kamikawa, Shuji Nakamura, and Steven P. DenBaars.
2021. "Semipolar {
Gandrothula, S., Zhang, H., Shapturenka, P., Anderson, R., Wong, M. S., Li, H., Kamikawa, T., Nakamura, S., & DenBaars, S. P.
(2021). Semipolar {