Angle-Resolved Intensity of Polarized Micro-Raman Spectroscopy for 4H-SiC
Abstract
:1. Introduction
2. Materials and Experiments
3. Method and Results
3.1. Raman Spectra of SiC
3.2. Raman Intensity Theory of SiC
3.3. Analysis of Raman Intensity of SiC
3.3.1. Vertical Backscattering
- HH case
- HV case
3.3.2. Oblique Backscattering ii = is = i > 0°
- HH case
- HV case
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Guo, J.; Yang, Y.; Raghothamachar, B.; Kim, T.; Dudley, M.; Kim, J. Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial. J. Cryst. Growth 2017, 480, 119–125. [Google Scholar] [CrossRef]
- Ramsdell, L.S. Studies on silicon carbide. Am. Mineral. 1947, 32, 64–82. [Google Scholar]
- Schaffer, W.J.; Negley, G.H.; Irvine, K.G.; Palmour, J.W. Conductivity Anisotropy in Epitaxial 6H and 4H Sic. MRS Online Proc. Libr. Arch. 1994, 339, 595. [Google Scholar] [CrossRef]
- Lyon, L.A.; Keating, C.D.; Fox, A.P.; Baker, B.E.; Natan, M.J. Raman Spectroscopy. Anal. Chem. 1998, 70, 341–361. [Google Scholar] [CrossRef] [PubMed]
- Nafie, L.A. Recent advances in linear and non-linear Raman spectroscopy. Part XI. J. Raman Spectrosc. 2017, 48, 1692–1717. [Google Scholar] [CrossRef]
- Qiu, W.; Kang, Y.L. Mechanical behavior study of microdevice and nanomaterials by Raman spectroscopy: A review. Chin. Sci. Bull. 2014, 59, 2811–2824. [Google Scholar] [CrossRef]
- Li, R.B.; Shang, Y.C.; Xing, H.D.; Wang, X.J.; Sun, M.Y.; Qiu, W. Orientation Identification of the Black Phosphorus with Different Thickness Based on B-2g Mode Using a Micro-Raman Spectroscope under a Nonanalyzer Configuration. Materials 2020, 13, 5572. [Google Scholar] [CrossRef] [PubMed]
- Gudaitis, R.; Lazauskas, A.; Jankauskas, S.; Meskinis, S. Catalyst-Less and Transfer-Less Synthesis of Graphene on Si (100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures. Materials 2020, 13, 5630. [Google Scholar] [CrossRef]
- Yin, J.H.; Zhou, B.D.; Li, L.; Liu, Y.; Guo, W.; Talwar, D.N.; He, K.Y.; Ferguson, I.T.; Wan, L.Y.; Feng, Z.C. Optical and structural properties of AlN thin films deposited on different faces of sapphire substrates. Semicond. Sci. Tech. 2021, 36, 045012. [Google Scholar] [CrossRef]
- Fu, D.H.; He, X.Y.; Ma, L.L.; Xing, H.D.; Meng, T.; Chang, Y.; Qiu, W. The 2-axis stress component decoupling of {100} c-Si by using oblique backscattering micro-Raman spectroscopy. Sci. China Phys. Mech. 2020, 63, 55–61. [Google Scholar] [CrossRef]
- Sun, C.L.; Wang, Y.J.; Gu, H.; Fan, H.B.; Yang, G.J.; Ignaszak, A.; Tang, X.F.; Liu, D.; Zhang, J.J. Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 2020, 77, 105092. [Google Scholar] [CrossRef]
- Matsumoto, M.; Huang, H.; Harada, H.; Kakimoto, K.; Yan, J. On the phase transformation of single-crystal 4H–SiC during nanoindentation. J. Phys. D Appl. Phys. 2017, 50, 265303. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, S.I.; Kim, S.; Lee, N.S.; Shin, H.K.; Lee, C.W. Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses. Nanoscale 2020, 12, 8216–8229. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, C.; Agati, M.; Zimbone, M.; Boninelli, S.; Castiello, A.; Pecora, A.; Fortunato, G.; Calcagno, L.; Torrisi, L.; La Via, F. Laser Annealing of P and Al Implanted 4H-SiC Epitaxial Layers. Materials 2019, 12, 3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchimaru, T.; Ohmori, N.; Abe, Y.; Komiyama, J. Evaluation of Stacking Faults in Single-Crystalline 3C-SiC Films by Polarized Raman Spectroscopy. Jpn. J. Appl. Phys. 2013, 52, 075501. [Google Scholar] [CrossRef]
- Shen, W.M.; Shao, Z.X. Dispersion between Ordinary Ray and Extraordinary Ray in Uniaxial Crystals for Any Orientation of Optical Axis. Acta Opt. Sin. 2002, 6, 765–768. [Google Scholar]
- Simon, M.C. Ray tracing formulas for monoaxial optical components. Appl. Opt. 1983, 22, 354–360. [Google Scholar] [CrossRef]
- Sun, G.; Jin, S.L. Analyses of Jones Matrix of Birefringent Grystals. Appl. Opt. 2005, 26, 17–21. [Google Scholar]
- Qiu, W.; Ma, L.L.; Qiu, L.; Xing, H.D.; Cheng, C.L.; Huang, G.Y. A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy. Acta Mech. Sin. 2018, 34, 1095–1107. [Google Scholar] [CrossRef]
- Zhu, W.L.; Pezzotti, G. Raman analysis of three-dimensionally graded stress tensor components in sapphire. Appl. Phys. 2011, 109, 073502. [Google Scholar] [CrossRef]
- Zhao, D.S.; Wang, F.Z.; Wan, L.Y.; Yang, F.Y.; Feng, Z.C. Study on Anisotropic Properties of 4H-SiC by Polarized Raman Scattering Spectroscopy. Light Scatt. 2018, 30, 133–138. [Google Scholar]
- Wang, S.; Zhan, M.; Wang, G.; Xuan, H.; Zhang, W.; Liu, C.; Xu, C.; Liu, Y.; Wei, Z.; Chen, X. 4H-SiC: A new nonlinear material for midinfrared lasers. Laser Photonics Rev. 2013, 7, 831–838. [Google Scholar] [CrossRef]
- Small Crystals, High Energy. Available online: http://www.ccdi.gov.cn/yaowen/202006/t20200608_219667.html (accessed on 6 April 2021).
- Xu, Z.W.; He, Z.D.; Song, Y.; Fu, X.; Rommel, M.; Luo, X.C.; Hartmaier, A.; Zhang, J.J.; Fang, F.Z. Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining. Micromachines 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakakima, H.; Takamoto, S.; Murakami, Y.; Hatano, A.; Goryu, A.; Hirohata, K.; Izumi, S. Development of a method to evaluate the stress distribution in 4H-SiC power devices. Jpn. J. Appl. Phys. 2018, 57, 106602. [Google Scholar] [CrossRef]
- Suda, J.; Suwa, S.; Mizuno, S.; Togo, K.; Mastuo, Y. Micro-Raman imaging on 4H-SiC in contact with the electrode at room temperature. Spectrochim. Acta A 2018, 193, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, S. Opaque Mineral Crystal Optics, 2nd ed.; Geological Publishing House: Beijing, China, 1987; p. 88. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Xiao, A.; Li, R.; Wang, M.; He, S.; Sun, M.; Wang, L.; Qu, C.; Qiu, W. Angle-Resolved Intensity of Polarized Micro-Raman Spectroscopy for 4H-SiC. Crystals 2021, 11, 626. https://doi.org/10.3390/cryst11060626
Chang Y, Xiao A, Li R, Wang M, He S, Sun M, Wang L, Qu C, Qiu W. Angle-Resolved Intensity of Polarized Micro-Raman Spectroscopy for 4H-SiC. Crystals. 2021; 11(6):626. https://doi.org/10.3390/cryst11060626
Chicago/Turabian StyleChang, Ying, Aixia Xiao, Rubing Li, Miaojing Wang, Saisai He, Mingyuan Sun, Lizhong Wang, Chuanyong Qu, and Wei Qiu. 2021. "Angle-Resolved Intensity of Polarized Micro-Raman Spectroscopy for 4H-SiC" Crystals 11, no. 6: 626. https://doi.org/10.3390/cryst11060626
APA StyleChang, Y., Xiao, A., Li, R., Wang, M., He, S., Sun, M., Wang, L., Qu, C., & Qiu, W. (2021). Angle-Resolved Intensity of Polarized Micro-Raman Spectroscopy for 4H-SiC. Crystals, 11(6), 626. https://doi.org/10.3390/cryst11060626