Crystal Structure, Vibrational, Spectroscopic and Thermochemical Properties of Double Sulfate Crystalline Hydrate [CsEu(H2O)3(SO4)2]·H2O and Its Thermal Dehydration Product CsEu(SO4)2
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussions
3.1. Crystal, Vibrational and Electronic Structure
3.2. Thermochemical Properties
3.3. Luminescence Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Davis, J.B.; Marshall, D.B.; Housley, R.M.; Morgan, P.E. Machinable ceramics containing rare-earth phosphates. J. Am. Ceram. Soc. 1998, 81, 2169–2175. [Google Scholar] [CrossRef]
- Mortier, M.; Monteville, A.; Patriarche, G.; Mazé, G.; Auzel, F. New progresses in transparent rare-earth doped glass-ceramics. Opt. Mater. 2001, 16, 255–267. [Google Scholar] [CrossRef]
- Tanabe, S.; Hayashi, H.; Hanada, T.; Onodera, N. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals. Opt. Mater. 2002, 19, 343–349. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Santos, L.; Almeida, R. Rare-earth-doped transparent glass ceramics. Comptes Rendus Chim. 2002, 5, 845–854. [Google Scholar] [CrossRef]
- Mortier, M.; Bensalah, A.; Dantelle, G.; Patriarche, G.; Vivien, D. Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties. Opt. Mater. 2007, 29, 1263–1270. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Zhang, G.; Xie, J.; Han, J.; Zhao, X. Crystallization properties of magnesium aluminosilicate glass-ceramics with and without rare-earth oxides. J. Non-Cryst. Solids 2015, 419, 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Bu, Y.; Liu, C.-S.; Liu, T.; Yan, X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Jianbei, Q.I.U.; Qing, J.I.A.O.; Dacheng, Z.H.O.U.; Zhengwen, Y. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics. J. Rare Earths 2016, 34, 341–367. [Google Scholar]
- Atuchin, V.; Aleksandrovsky, A.; Molokeev, M.; Krylov, A.; Oreshonkov, A.; Zhou, D. Structural and spectroscopic properties of self-activated monoclinic molybdate BaSm2(MoO4)4. J. Alloy Compd. 2017, 729, 843–849. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Wu, T.; Lu, H.; Tu, Y.; Zhao, S.; Xie, S.; Han, F.; Xu, S. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals. RSC Adv. 2018, 8, 7679–7686. [Google Scholar] [CrossRef] [Green Version]
- Laidler, J.; Battles, J.; Miller, W.; Ackerman, J.; Carls, E. Development of pyroprocessing technology. Prog. Nucl. Energy 1997, 31, 131–140. [Google Scholar] [CrossRef]
- Preinfalk, C.; Morteani, G. The Industrial Applications of Rare Earth Element: Lanthanides, Tantalum and Niobium; Springer: Berlin/Heidelberg, Germany, 1989; pp. 359–370. [Google Scholar]
- Jha, A.R. Rare Earth Materials: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ramana, C.V.; Vemuri, V.R.; Kaichev, V.; Kochubey, V.A.; Saraev, A.; Atuchin, V.V. X-ray photoelectron spectroscopy depth profiling of La2O3/Si thin films deposited by reactive magnetron sputtering. ACS Appl. Mater. Interfaces 2011, 3, 4370–4373. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, Y.; Molokeev, M.S.; Atuchin, V.V. Structural and luminescence properties of yellow-emitting NaScSi2O6:Eu2+ phosphors: Eu2+ site preference analysis and generation of red emission by cooping Mn2+ for white-light-emitting diode applications. J. Phys. Chem. C 2013, 117, 20847–20854. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Microwave sol-gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4:Er3+/Yb3+ phosphors with incommensurately modulated structure. J. Solid State Chem. 2015, 228, 160–166. [Google Scholar] [CrossRef]
- Ho, F.H.; Abdul-Rashid, S.H.; Ghazilla, R.A.R. Analytic hierarchy process-based analysis to determine the barriers to implementing a material efficiency strategy: Electrical and electronics’ companies in the Malaysian context. Sustainability 2016, 8, 1035. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, F.; Zhong, S.-J. Whisker growth on SnAgCu-xPr solders in electronic packaging. J. Mater. Sci. Mater. Electron. 2016, 27, 5618–5621. [Google Scholar] [CrossRef]
- Riba, J.-R.; Torres, C.L.; Romeral, L.; Garcia, A. Rare-earth-free propulsion motors for electric vehicles: A technology review. Renew. Sustain. Energy Rev. 2016, 57, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Han, G.; Yue, J.; Hou, W.; Wu, J. Multifunctional rare-earth-doped tin oxide compact layers for improving performances of photovoltaic devices. Adv. Mater. Interfaces 2016, 3. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Subanakov, A.K.; Aleksandrovsky, A.S.; Bazarov, B.G.; Bazarova, J.G.; Dorzhieva, S.G.; Gavrilova, T.A.; Krylov, A.S.; Molokeev, M.S.; Oreshonkov, A.S.; et al. Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 2017, 28, 1309–1315. [Google Scholar] [CrossRef]
- Li, H.; Sheng, T.; Xue, Z.; Zhu, X.; Hu, S.; Wen, Y.; Fu, R.; Zhuo, C.; Wu, X. Synthesis, structure, characterization, and multifunctional properties of a family of rare earth organic frameworks. CrystEngComm 2017, 19, 2106–2112. [Google Scholar] [CrossRef]
- Verma, S.; Amritphale, S.S.; Das, S. Multifunctional application of cytosine for the synthesis of hybrid homogenized nano-sized rare earth oxide (RE2O3) and rare earth oxycarbonate (RE2O2CO3) (RE = Nd, Sm) advance material via microwave irradiation. Prot. Met. Phys. Chem. Surf. 2017, 53, 444–451. [Google Scholar] [CrossRef]
- Ahmad, T.; Lone, I.H. Development of multifunctional lutetium ferrite nanoparticles: Structural characterization and properties. Mater. Chem. Phys. 2017, 202, 50–55. [Google Scholar] [CrossRef]
- Ying, Z.; Jingqin, W.; Huiling, K. Study on electrical properties of AgSnO2 contact materials doped with rare-earth La, Ce, and Y. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 9, 864–870. [Google Scholar] [CrossRef]
- Azarapin, N.O.; Atuchin, V.V.; Maximov, N.G.; Aleksandrovsky, A.S.; Molokeev, M.S.; Oreshonkov, A.S.; Shestakov, N.P.; Krylov, A.S.; Burkhanova, T.M.; Mukherjee, S.; et al. Synthesis, structure, melting and optical properties of three complex orthorhombic sulfides BaDyCuS3, BaHoCuS3 and BaYbCuS3. Mater. Res. Bull. 2021, 140, 111314. [Google Scholar] [CrossRef]
- Kaplyanskii, A.A.; Macfarlane, R. Spectroscopy of Solids Containing Rare Earth Ions; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Chatterjee, A.; Singh, A.K.; Jayaraman, A. Pressure-induced electronic collapse and structural changes in rare-earth mono-chalcogenides. Phys. Rev. B 1972, 6, 2285. [Google Scholar] [CrossRef]
- Greenwood, N.; Earnshaw, A. Chemistry of the Elements; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Yu, D.; Tret’yakov, L.I.; Martynenko, A.N.; Grigor’ev, A.; Tsivadze, Y. Inorganic Chemistry: Chemistry of the Elements; Students Book; Butterworth-Heinemann: Oxford, UK, 2001; pp. 131–204. (In Russian) [Google Scholar]
- Cooper, B.R. Magnetic properties of rare earth metals. In Solid State Physics; Seitz, F., Turnbull, D., Ehrenreich, H., Eds.; Academic Press: Cambridge, MA, USA, 1968; Volume 21, pp. 393–490. [Google Scholar]
- Wakeshima, M.; Nishimine, H.; Hinatsu, Y. Crystal structures and magnetic properties of rare earth tantalates RE3TaO7(RE = rare earths). J. Phys. Condens. Matter 2004, 16, 4103–4120. [Google Scholar] [CrossRef]
- Gupta, S.; Suresh, K.G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015, 618, 562–606. [Google Scholar] [CrossRef] [Green Version]
- Rahimi-Nasrabadi, M.; Behpour, M.; Sobhani-Nasab, A.; Hosseinpour-Mashkani, S.M. ZnFe2−xLaxO4 nanostructure: Synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electr. 2015, 26, 9776–9781. [Google Scholar] [CrossRef]
- Hinatsu, Y.; Doi, Y. Structures and magnetic properties of new fluorite-related quaternary rare earth oxides LnY2TaO7 and LaLn2RuO7 (Ln = rare earths). J. Solid State Chem. 2016, 233, 37–43. [Google Scholar] [CrossRef]
- Nishiyama, A.; Doi, Y.; Hinatsu, Y. Magnetic interactions in rhenium-containing rare earth double perovskites Sr2LnReO6 (Ln = rare earths). J. Solid State Chem. 2017, 248, 134–141. [Google Scholar] [CrossRef]
- Shi, P.; Xia, Z.; Molokeev, M.S.; Atuchin, V.V. Crystal chemistry and luminescence properties of red-emitting CsGd1−xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 2014, 43, 9669–9676. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Huang, Z.; Xia, Z.; Molokeev, M.S.; Jiang, X.; Lin, Z.; Atuchin, V.V. Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 2015, 44, 7679–7686. [Google Scholar] [CrossRef]
- Behrendt, M.; Mahlik, S.; Grinberg, M.; Stefańska, D.; Dereń, P.J. Influence of charge transfer state on Eu3+ luminescence in LaAlO3, by high pressure spectroscopy. Opt. Mater. 2017, 63, 158–166. [Google Scholar] [CrossRef]
- Puchalska, M. High enhancement of Eu3+ luminescence in SrAl4O7 phosphor by means of charge compensation with Na+ ions. Opt. Mater. 2017, 72, 452–458. [Google Scholar] [CrossRef]
- Laishram, R.; Maitra, U. Bile salt-derived Eu3+ organogel and hydrogel: Water-enhanced luminescence of Eu3+ in a gel matrix. ChemistrySelect 2018, 3, 519–523. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; et al. Achieving high quantum efficiency narrow-band β-Sialon:Eu2+ phosphors for high-brightness LCD backlights by reducing the Eu3+ luminescence killer. Chem. Mater. 2017, 30, 494–505. [Google Scholar] [CrossRef]
- Van De Haar, M.A.; Werner, J.; Kratz, N.; Hilgerink, T.; Tachikirt, M.; Honold, J.; Krames, M. Increasing the effective absorption of Eu3+-doped luminescent materials towards practical light emitting diodes for illumination applications. Appl. Phys. Lett. 2018, 112, 132101. [Google Scholar] [CrossRef]
- Baur, F.; Jüstel, T. Uranyl sensitized Eu3+ luminescence in Ln(UO2)3(PO4)2O(OH)·6H2O phosphors (Ln = Y, Eu, La) for warm-white light emitting diodes. J. Lumin. 2018, 196, 431–436. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Z.; Takei, T.; Wang, X.; Zhu, Q.; Li, X.; Kim, B.-N.; Sun, X.; Li, J.-G. Selective crystallization of four tungstates (La2W3O12, La2W2O9, La14W8O45, and La6W2O15) via hydrothermal reaction and comparative study of Eu3+ luminescence. Inorg. Chem. 2018, 57, 6632–6640. [Google Scholar] [CrossRef]
- Li, C.; Fan, X.; Jiang, P.; Jin, X. Delamination-indicating of atmosphere-plasma-sprayed thermal barrier coating system using Eu3+ luminescence mapping. Mater. Lett. 2018, 222, 41–44. [Google Scholar] [CrossRef]
- Paama, L.; Pitkänen, I.; Valkonen, J.; Pärnoja, E.; Kola, H.; Perämäki, P. Thermal and spectroscopic investigation of europium and samarium sulphates hydrates by TG-FTIR and ICP-MS techniques. Talanta 2005, 67, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ding, S.; Zheng, X. Hydrothermal synthesis, crystal structure and properties of 2-D and 3-D lanthanide sulfates. J. Solid State Chem. 2007, 180, 2020–2025. [Google Scholar] [CrossRef]
- Choi, M.-H.; Kim, M.-K.; Jo, V.; Lee, D.-W.; Shim, I.-W.; Ok, K.M. Hydrothermal syntheses, structures, and characterizations of two lanthanide sulfate hydrates materials, La2(SO4)3·H2O and Eu2(SO4)3·4H2O. Bull. Korean Chem. Soc. 2010, 31, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, Y.; Zhao, H.; Jiang, C.; Sun, Y.; Xu, Y. Synthesis, characterization and very strong luminescence of a new 3D europium sulfate Eu2(H2O)4(SO4)3. J. Struct. Chem. 2011, 52, 954–958. [Google Scholar] [CrossRef]
- Wang, X.J.; Molokeev, M.S.; Zhu, Q.; Li, J.G. Controlled hydrothermal crystallization of anhydrous Ln2(OH)4SO4 (Ln = Eu-Lu, Y) as a new family of layered rare earth metal hydrooxides. Chem. Eur. J. 2017, 23, 16034–16043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atuchin, V.V.; Subanakov, A.K.; Aleksandrovsky, A.S.; Bazarov, B.G.; Bazarova, J.G.; Gavrilova, T.A.; Krulov, A.S.; Molokeev, M.S.; Oreshonkov, A.S.; Stefanovich, S.Y. Structural and spectroscopic properties of noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Des. 2018, 140, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Denisenko, Y.G.; Atuchin, V.V.; Molokeev, M.S.; Aleksandrovsky, A.S.; Krylov, A.S.; Oreshonkov, A.S.; Volkova, S.S.; Andreev, O.V. Structure, thermal stability, and spectroscopic properties of triclinic double sulfate AgEu(SO4)2 with isolated SO4 groups. Inorg. Chem. 2018, 57, 13279–13288. [Google Scholar] [CrossRef]
- Lal, H.B.; Lundgren, L. Magnetic susceptibility, electrical conductivity and dielectric constant of Eu2(WO4)3 single crystals. J. Phys. Soc. Jpn. 1976, 41, 1216–1223. [Google Scholar] [CrossRef]
- Lal, H.; Dar, N. Magnetic susceptibility of Eu2(WO4)3 single crystals. Phys. B + C 1976, 84, 254–258. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, J.Z.; Li, W. Preparation of tetragonal defect scheelite-type RE2(MoO4)3 (RE = La to Ho) by precipitation method. Solid State Ion. 1989, 32, 244–249. [Google Scholar] [CrossRef]
- Imanaka, N.; Hiraiwa, M.; Tamura, S.; Adachi, G. A new realization route of Al2(WO4)4-Ln2(WO4)3 (Ln = Lu, Eu) solid solution single crystals by electrochemical ion doping. Electrochem. Solid-State Lett. 1999, 2, 570–571. [Google Scholar] [CrossRef]
- Dmitriev, V.; Sinitsyn, V.; Dilanian, R.; Machon, D.; Kuznetsov, A.; Ponyatovsky, E.; Lucazeau, G.; Weber, H.P. In situ pressure-induced solid-state amorphization in Sm2(MoO4)3, Eu2(MoO4)3 and Gd2(MoO4)3 crystals: Chemical decomposition scenario. J. Phys. Chem. Solids 2003, 64, 307–312. [Google Scholar] [CrossRef]
- Kodaira, C.; Brito, H.; Malta, O.; Serra, O. Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. J. Lumin. 2003, 101, 11–21. [Google Scholar] [CrossRef]
- Machon, D.; Dmitriev, V.P.; Sinitsyn, V.V.; Lucazeau, G. Eu2(MoO4)3 single crystal at high pressure: Structural phase transitions and amorphization probed by fluorescence spectroscopy. Phys. Rev. B 2004, 70, 094117. [Google Scholar] [CrossRef]
- Shmyt’ko, I.M.; Kudrenko, E.A.; Sinitsyn, V.V.; Red’kin, B.S.; Ponyatovsky, E.G. Features of the pressure-induced phase transi-tions in Eu2(MoO4)3 single crystals. J. Exp. Theor. Phys. Lett. 2005, 82, 409–412. [Google Scholar] [CrossRef]
- Park, K.-C.; Ahn, H.-C.; Nguyen, H.-D.; Jang, H.-Y.; Mho, S.-I. Optical properties of Eu2(WO4)3 and Tb2(WO4)3 and of CaWO4 doped with Eu3+ or Tb3+—Revisited. J. Korean Phys. Soc. 2008, 53, 2220–2223. [Google Scholar] [CrossRef]
- Martinez-Garcia, J.; Arakcheeva, A.; Pattison, P.; Morozov, V.; Chapuis, G. Validating the model of a (3 + 1)-dimensional in-commensurately modulated structure as generator of a family of compounds for the Eu2(MoO4)3 scheelite structure. Philos. Mag. Lett. 2009, 89, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Honma, T.; Doi, Y.; Hinatsu, Y.; Komatsu, T. Magnetism of β′-Gd2(MoO4)3 and photo-luminescence of β′-Eu2(MoO4)3 crystallized in rare-earth molybdenum borate glasses. J. Ceram. Soc. Jpn. 2013, 121, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Atuchin, V.V.; Aleksandrovsky, A.; Chimitova, O.D.; Gavrilova, T.A.; Krylov, A.; Molokeev, M.; Oreshonkov, A.S.; Bazarov, B.G.; Bazarova, J.G. Synthesis and spectroscopic properties of monoclinic α-Eu2(MoO4)3. J. Phys. Chem. C 2014, 118, 15404–15411. [Google Scholar] [CrossRef]
- Lahoz, F.; Sabalisck, N.P.; Cerdeiras, E.; Mestres, L. Nano-to millisecond lifetime luminescence properties in Ln2(WO4)3 (Ln = La, Ho, Tm and Eu) microcrystalline powders with different crystal structures. J. Alloys Compd. 2015, 649, 1253–1259. [Google Scholar] [CrossRef]
- Denisenko, Y.G.; Aleksandrovsky, A.; Atuchin, V.; Krylov, A.; Molokeev, M.; Oreshonkov, A.; Shestakov, N. Exploration of structural, thermal and spectroscopic properties of self-activated sulfate Eu2(SO4)3 with isolated SO4 groups. J. Ind. Eng. Chem. 2018, 68, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Sirotinkin, S.P.; Efremov, V.A.; Kovba, L.M.; Pokrovskii, A.N. Crystal structure of lithium-europium double sulfate. Kristallografiya 1977, 22, 966–970. [Google Scholar]
- Iyer, P.N.; Kulkarni, N.K. Preparation and characterization of TIMIII(SO4)2 4H2O (M (III) ≡ Pu, Sm to Dy). J. Alloys Compd. 1995, 217, 253–257. [Google Scholar] [CrossRef]
- Iyer, P.N.; Mudher, K.D.S.; Kulkarni, N.K. Preparation and characterisation of TlLn(SO4)2·H2O (Ln = Sm to Lu, Y). J. Alloys Compd. 1997, 252, 71–75. [Google Scholar] [CrossRef]
- Kazmierczak, K.; Höppe, H.A. Syntheses, crystal structures and vibrational spectra of KLn(SO4)2·H2O (Ln = La, Nd, Sm, Eu, Gd, Dy). J. Solid State Chem. 2010, 183, 2087–2094. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Aleksandrovsky, A.S.; Bazarov, B.G.; Bazarova, J.G.; Chimitova, O.D.; Denisenko, Y.G.; Gavrilova, T.A.; Krylov, A.S.; Maximovskiy, E.A.; Molokeev, M.S.; et al. Exploration of structural, vibrational and spectroscopic properties of self-activated orthorhombic double molybdate RbEu(MoO4)2 with isolated MoO4 units. J. Alloys Compd. 2019, 785, 692–697. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Seki, S.; Ishiba, T. The Eu site symmetry in AEu(MoO4)2 (A= Cs or Rb) generating saturated red luminescence. J. Solid State Chem. 1991, 94, 396–403. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, H.; Gong, M.; Su, Q. The red phosphor NaEu(MoO4)2 prepared by the combustion method. Mater. Lett. 2008, 62, 619–622. [Google Scholar] [CrossRef]
- Guo, C.; Wang, S.; Chen, T.; Luan, L.; Xu, Y. Preparation of phosphors AEu(MoO4)2 (A = Li, Na, K and Ag) by sol-gel method. Appl. Phys. A 2009, 94, 365–371. [Google Scholar] [CrossRef]
- Huang, J.; Xu, J.; Luo, H.; Yu, X.; Li, Y. Effect of alkali-metal ions on the local structure and luminescence for double tungstate compounds AEu(WO4)2 (A = Li, Na, K). Inorg. Chem. 2011, 50, 11487–11492. [Google Scholar] [CrossRef]
- Perles, J.; Fortes-Revilla, C.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, M.A.; Ruiz-Valero, A.C.; Snejko, N. Synthesis, structure, and catalytic properties of rare-earth ternary sulfates. Chem. Mater. 2005, 17, 2701–2706. [Google Scholar] [CrossRef]
- Deng, Z.; Bai, F.; Xing, Y.; Xing, N.; Xu, L. Reaction in situ found in the synthesis of a series of lanthanide sulfate complexes and investigation on their structure, spectra and catalytic activity. Open J. Inorg. Chem. 2013, 3, 76–99. [Google Scholar] [CrossRef] [Green Version]
- Denisenko, Y.G.; Sedykh, A.E.; Molokeev, M.S.; Oreshonkov, A.S.; Aleksandrovsky, A.S.; Krylov, A.S.; Nikolay, A.; Khritokhin, E.; Sal’nikova, I.; Andreev, O.V.; et al. Crystal and electronic structure, thermochemical and photophysical properties of europium-silver sulfate monohydrate AgEu(SO4)2⋅H2O. J. Solid State Chem. 2021, 294, 121898. [Google Scholar] [CrossRef]
- Jasty, S.; Malhotra, V.M.; Robinson, P.D. Effect of the lanthanide ion on the structure and low-temperature phase transitions in RbL(SO4)2⋅4H2O (L ≡ La−Er) crystals. J. Phys. Condens. Matter 1992, 4, 4769–4778. [Google Scholar] [CrossRef]
- Eriksson, B.; Larsson, L.O.; Niinisto, L.; Skoglund, U. Crystal structure of ammonium samarium sulfate tetrahydrate. Inorg. Chem. 1974, 13, 290–295. [Google Scholar] [CrossRef]
- Chadha, A.; Sampath, S.; Chackraburtty, D. X-ray powder diffraction and thermal studies on some uranium (III) compounds. Inorg. Chim. Acta 1980, 42, 163–167. [Google Scholar] [CrossRef]
- Safianov, I.N.; Kuz’min, E.A.; Iskhakova, L.D.; Ilyukhin, V.V.; Belov, N.V. Crystal structure of double Cs,La-sulphate, Cs2SO4·La2(SO4)3·8H2O. Dokl. Akad. Nauk. SSSR 1975, 220, 346–348. [Google Scholar]
- Bukovec, P.; Golic, L. The salts and double salts of rare earths. Crystal structure of cesium bi-sulfato tri-aquopraseodimate (III) monohydrate. Vestn. Slov. Kem. Drus. 1975, 22, 19–25. [Google Scholar]
- Bukovec, N.; Golic, L.; Siftar, J. The salts and double salts of rare earths. Structural study of dehydratation differences between Cs[Pr(SO4)2(H2O)3]·H2O and Cs[Lu(SO4)2(H2O)3]·H2O. Vestn. Slov. Kem. Drus. 1979, 26, 377–385. [Google Scholar]
- Boujelben, M.; Toumi, M.; Mhiri, T. NH4Ce(SO4)2·4H2O. Acta Cryst. E 2007, 63, i144–i145. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Gavrilova, T.A.; Kuratieva, N.V.; Okotrub, K.A.; Pervukhina, N.V.; Surovtsev, N.V. Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals. J. Cryst. Growth 2011, 318, 987–990. [Google Scholar] [CrossRef]
- Alekseev, E.V.; Felbinger, O.; Wu, S.; Malcherek, T.; Depmeier, W.; Modolo, G.; Gesing, T.M.; Krivovichev, S.V.; Suleimanov, E.V.; Gavrilova, T.A.; et al. K[AsW2O9], the first member of the arsenate tungsten bronze family: Synthesis, structure, spec-troscopic and non-linear optical properties. J. Solid State Chem. 2013, 204, 59–63. [Google Scholar] [CrossRef]
- Kokh, K.; Atuchin, V.; Gavrilova, T.; Kuratieva, N.; Pervukhina, N.; Surovtsev, N. Microstructural and vibrational properties of PVT grown Sb2Te3 crystals. Solid State Commun. 2014, 177, 16–19. [Google Scholar] [CrossRef]
- Troitskaia, I.B.; Gavrilova, T.A.; Gromilov, S.A.; Sheglov, D.V.; Atuchin, V.V.; Vemuri, R.S.; Ramana, C.V. Growth and structural properties of α-MoO3 (010) microplates with atomically flat surface. Mater. Sci. Eng. B 2010, 174, 159–163. [Google Scholar] [CrossRef]
- Denisenko, Y.; Khritokhin, N.; Andreev, O.; Basova, S.; Sal’Nikova, E.; Polkovnikov, A. Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4. J. Solid State Chem. 2017, 255, 219–224. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON—A Multipurpose Crystallographic Tool. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2008. [Google Scholar]
- Brandenburg, K.; Berndt, M. DIAMOND—Visual Crystal Structure Information System CRYSTAL IMPACT. J. Appl. Crystallogr. 1999, 32, 1028–1029. [Google Scholar]
- Bruker. TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual. 2008. Available online: http://algol.fis.uc.pt/jap/TOPAS%204-2%20Users%20Manual.pdf (accessed on 8 August 2021).
- Sarukhanyan, N.L.; Iskhakova, L.D.; Trunov, V.K. Crystal structure of RbEu(SO4)2. Kristallografiya 1983, 28, 452–456. [Google Scholar]
- Clark, S.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Ceperley, D.; Alder, B. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; Wiley and Sons: New York, NY, USA, 2009. [Google Scholar]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Oba, F.; Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 2017, 128, 140–184. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, I.; Kolokolov, D.; Kurochkin, M.; Voznesenskiy, M.; Osmolowsky, M.; Lähderanta, E.; Osmolovskaya, O. Morphology and doping concentration effect on the luminescence properties of SnO2:Eu3+ nanoparticles. J. Alloy Compd. 2020, 822, 153640. [Google Scholar] [CrossRef]
Compound | [CsEu(H2O)3(SO4)2]·H2O | CsEu(SO4)2 |
---|---|---|
Space group | P21/c | C2/c |
T, K | 300 K | |
a, Å | 6.5574(1) | 14.327 (1) |
b, Å | 19.0733(3) | 5.3838 (4) |
c, Å | 8.8364(2) | 9.5104 (6) |
β, ° | 93.931(1) | 101.979 (3) |
V, Å3 | 1102.58(3) | 717.58 (9) |
Z | 4 | 4 |
Rwp, % | 5.50 | 6.58 |
Rp, % | 4.32 | 5.04 |
Rexp, % | 2.93 | 3.00 |
χ2 | 1.87 | 2.19 |
RB, % | 6.01 | 2.46 |
Molecular Symmetry Td | Site Symmetry C1 | Group Symmetry C2h |
---|---|---|
A1 (ν1) | A | Ag + Au + Bg + Bu |
E (ν2) | 2A | 2(Ag + Au + Bg + Bu) |
F2 (ν3) | 3A | 3(Ag + Au + Bg + Bu) |
F2 (ν4) | 3A | 3(Ag + Au + Bg + Bu) |
Effect | Reaction | References | Loss of Mass, % | |
---|---|---|---|---|
Theoretical | Experimental | |||
A | [CsEu(H2O)3(SO4)2]·H2O→CsEu(SO4)2·H2O + 3H2O↑ | This work | 9.85 | 9.57 |
B | CsEu(SO4)2·H2O→CsEu(SO4)2·1/2H2O + 1/2H2O↑ | 11.48 | 11.02 | |
C | CsEu(SO4)2·1/2H2O→CsEu(SO4)2 + 1/2H2O↑ | 13.13 | 12.92 | |
D | CsEu(SO4)2→Cs2SO4 + Eu2O2SO4 + 2SO2 + O2 | 27.71 | 27.31 | |
E | Eu2O2SO4→Eu2O3 + SO2 + 1/2O2 | [48,67] | 35.00 | 34.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denisenko, Y.G.; Molokeev, M.S.; Oreshonkov, A.S.; Krylov, A.S.; Aleksandrovsky, A.S.; Azarapin, N.O.; Andreev, O.V.; Razumkova, I.A.; Atuchin, V.V. Crystal Structure, Vibrational, Spectroscopic and Thermochemical Properties of Double Sulfate Crystalline Hydrate [CsEu(H2O)3(SO4)2]·H2O and Its Thermal Dehydration Product CsEu(SO4)2. Crystals 2021, 11, 1027. https://doi.org/10.3390/cryst11091027
Denisenko YG, Molokeev MS, Oreshonkov AS, Krylov AS, Aleksandrovsky AS, Azarapin NO, Andreev OV, Razumkova IA, Atuchin VV. Crystal Structure, Vibrational, Spectroscopic and Thermochemical Properties of Double Sulfate Crystalline Hydrate [CsEu(H2O)3(SO4)2]·H2O and Its Thermal Dehydration Product CsEu(SO4)2. Crystals. 2021; 11(9):1027. https://doi.org/10.3390/cryst11091027
Chicago/Turabian StyleDenisenko, Yuriy G., Maxim S. Molokeev, Aleksandr S. Oreshonkov, Alexander S. Krylov, Aleksandr S. Aleksandrovsky, Nikita O. Azarapin, Oleg V. Andreev, Illaria A. Razumkova, and Victor V. Atuchin. 2021. "Crystal Structure, Vibrational, Spectroscopic and Thermochemical Properties of Double Sulfate Crystalline Hydrate [CsEu(H2O)3(SO4)2]·H2O and Its Thermal Dehydration Product CsEu(SO4)2" Crystals 11, no. 9: 1027. https://doi.org/10.3390/cryst11091027
APA StyleDenisenko, Y. G., Molokeev, M. S., Oreshonkov, A. S., Krylov, A. S., Aleksandrovsky, A. S., Azarapin, N. O., Andreev, O. V., Razumkova, I. A., & Atuchin, V. V. (2021). Crystal Structure, Vibrational, Spectroscopic and Thermochemical Properties of Double Sulfate Crystalline Hydrate [CsEu(H2O)3(SO4)2]·H2O and Its Thermal Dehydration Product CsEu(SO4)2. Crystals, 11(9), 1027. https://doi.org/10.3390/cryst11091027