‘Horror Vacui’ in the Oxygen Sublattice of Lithium Niobate Made Affordable by Cationic Flexibility
Abstract
:1. Introduction
2. Structure and Charge Compensation Mechanism
3. Defect Generation in LiNbO3
3.1. Defect Generation in cLN by Thermal Reduction
3.2. Defect Generation in cLN by Ionizing Irradiation at Low Temperatures (T ≤ 77 K)
3.3. Mechanochemical Defect Generation in cLN Nanocrystals
3.4. Defect Generation in cLN by High-Energy Irradiation at Higher Temperatures (220 °C)
3.5. Defect Generation in Nearly Stoichiometric LiNbO3
4. Comparison with Model Calculations
- i.
- The local density approximation used by [13] calculates an unphysical self-interaction for large electron densities prevailing inside the bipolaron’s covalent bond between its and its constituents, unduly raising its energy. Corrections within the same framework but including the use of hybrid exchange-correlation functionals [40,41] or GIPAW pseudopotentials, self-consistently calculated U values, and the Bethe–Salpeter equation [42] lower the bipolaron level (+2 net-charge state) by more than 0.5 eV, partly underscoring even the single-polaron state (+3 net charge) and thereby verifying the negative-U property of the antisite not displayed for the +3/+2 transition in the results of [13]. It should be noted that the +1 and 0 net-charge transfer levels of the antisite have been shown to correspond to a bipolaron and one or two additional free polarons fully separated from each other inside the supercell [42]. This means that the ‘states’ with more than two electrons trapped on the antisite are spurious levels inside the conduction band or closely below the CBM, but their corrected positions can be used for an independent estimate of the position of the CBM. The corrections and estimates lead to agreement with independently calculated values of Egap considered realistic between 3.8 eV and 5.4 eV [56,57], while the values derived from the position of the UV absorption edge are close to 4.0 eV [54]. The charge densities of bipolaronic states have recently been calculated to extend ~1.5 eV below the CBM [10], also supporting the above estimates;
- ii.
- The corrections described in (i) do not concern the position of calculated oxygen-vacancy levels. In the as-grown crystal, the preferred empty state of the oxygen vacancy is expected to have a formation energy corresponding to the CBM with an error margin of ±0.5 eV;
- iii.
- The NbLi antisite requires more charge compensation than the oxygen vacancy (two more lithium vacancies, if comparing defect complexes with the same net charge), which further increases the energy difference between their realized levels by several tenths of an eV. Associations with charge compensators have been shown to amount to an energy gain of up to 0.52 eV for the −4VLi defect [40].
5. Conclusions
- i.
- the practically unchanged positions of the absorption bands at ~1.6 and ~2.5 eV obtained in cLN (attributed to small polarons and bipolarons/hole polarons, respectively) under all employed reduction, irradiation and grinding procedures up to 1050 °C; there were only small shifts of the ~2.5 eV band for changing stoichiometry which could be attributed to defect association effects both for bipolarons and hole polarons;
- ii.
- the lack of the bands at ~1.6 and ~2.5 eV attributed to small polarons and bipolarons in the absence of antisites in over-threshold LN:Mg [45] and the limited growth and instability of coloration observed in irradiated or reduced near-sLN;
- iii.
- missing of verifiable fingerprints of F+ centers and the lack of a consequent interpretation of their role;
- iv.
- calculations: bipolarons at NbLi antisites are predicted to provide deeper trapping sites for small polarons than oxygen vacancies; the latter have larger calculated association energies with lithium vacancies than with electrons.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crespillo, M.L.; Graham, J.T.; Agulló-López, F.; Zhang, Y.; Weber, W.J. Real-time Identification of Oxygen Vacancy Centers in LiNbO3 and SrTiO3 during irradiation with High Energy Particles. Crystals 2021, 11, 315. [Google Scholar] [CrossRef]
- Wang, C.; Sun, J.; Ni, W.; Yue, B.; Hong, F.; Liu, H.; Cheng, Z. Tuning oxygen vacancy in LiNbO3 single crystals for prominent memristive and dielectric behaviors. J. Am. Ceram. Soc. 2019, 102, 6705–6712. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Fierro-Ruiz, C.D.; Villalobos-Mendoza, S.D.; Carillo Flores, D.M.; Elizalde-Galindo, J.T.; Farias, R. Lithium Niobate Single Crystals and Powders Reviewed—Part I. Crystals 2020, 10, 973. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Villalobos-Mendoza, S.D.; Farias, R.; Fierro-Ruiz, C.D. Lithium Niobate Single Crystals and Powders Reviewed—Part II. Crystals 2020, 10, 990. [Google Scholar] [CrossRef]
- Grachev, V.G.; Malovichko, G.I. Structures of Impurity Defects in Lithium Niobate and Tantalate Derived from Electron Paramagnetic and Electron Nuclear Double Resonance Data. Crystals 2021, 11, 339. [Google Scholar] [CrossRef]
- Kling, A.; Marques, J.G. Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods. Crystals 2021, 11, 501. [Google Scholar] [CrossRef]
- Messerschmidt, S.; Krampf, A.; Vittadello, L.; Imlau, M.; Nörenberg, T.; Eng, L.M.; Emin, D. Small-Polaron Hopping and Low-Temperature (45–225 K) Photo-Induced Transient Absorption in Magnesium-Doped Lithium Niobate. Crystals 2020, 10, 809. [Google Scholar] [CrossRef]
- Vittadello, L.; Guilbert, L.; Fedorenko, S.; Bazzan, M. Polaron Trapping and Migration in Iron-Doped Lithium Niobate. Crystals 2021, 11, 302. [Google Scholar] [CrossRef]
- Suhak, Y.; Roshchupkin, D.; Redkin, B.; Kabir, A.; Jerliu, B.; Ganschow, S.; Fritze, H. Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures. Crystals 2021, 11, 398. [Google Scholar] [CrossRef]
- Schmidt, F.; Kozub, A.L.; Gerstmann, U.; Schmidt, W.G.; Schindlmayr, A. Electron Polarons in Lithium Niobate: Charge Localization, Lattice Deformation, and Optical Response. Crystals 2021, 11, 542. [Google Scholar] [CrossRef]
- Vasylechko, L.; Sydorchuk, V.; Lakhnik, A.; Suhak, Y.; Wlodarczyk, D.; Hurskyy, S.; Yakhnevych, U.; Zhydachevskyy, Y.; Sugak, D.; Syvorotka, I.; et al. Investigation of LiNb1−xTaxO3 Nanopowders Obtained with Mechanochemical Method. Crystals 2021, 11, 755. [Google Scholar] [CrossRef]
- Nico, C.; Monteiro, T.; Graça, M.P.F. Niobium oxides and niobates physical properties: Review and prospects. Progr. Mater. Sci. 2016, 8, 1–37. [Google Scholar] [CrossRef]
- Xu, H.; Lee, D.; He, J.; Sinnott, S.B.; Gopalan, V.; Dierolf, V.; Phillpot, S.R. Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculation. Phys. Rev. B 2008, 78, 174103. [Google Scholar] [CrossRef] [Green Version]
- Donnerberg, H.; Tomlinson, S.M.; Catlow, C.R.A.; Schirmer, O.F. Computer-simulation studies of intrinsic defects in LiNbO3 crystals. Phys. Rev. B 1989, 40, 11909–11916. [Google Scholar] [CrossRef]
- Lerner, P.; Legras, C.; Dumas, J.P. Stoechiométrie des monocristaux de métaniobate de lithium. J. Cryst. Growth 1968, 3–4, 231–235. [Google Scholar] [CrossRef]
- Smyth, D.M. Defects and Transport in LiNbO3. Ferroelectrics 1983, 50, 93–102. [Google Scholar] [CrossRef]
- Kovács, L.; Polgár, K. Density measurements on LiNbO3 crystals confirming Nb substitution for Li. Cryst. Res. Technol. 1986, 21, K101–K104. [Google Scholar] [CrossRef]
- Holmes, R.J.; Minford, W.J. The effects of boule to boule compositional variations on the properties of LiNbO3 electro-optic devices–An interpretation from defect chemistry studies. Ferroelectrics 1987, 75, 63–70. [Google Scholar] [CrossRef]
- Iyi, N.; Kitamura, K.; Izumi, F.; Yamamoto, J.K.; Hayashi, T.; Asano, H.; Kimura, S. Comparative study of defect structures in lithium niobate with different compositions. J. Sol. State Chem. 1992, 101, 340–352. [Google Scholar] [CrossRef]
- Shi, J.; Fritze, H.; Borchardt, G.; Becker, K.D. Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate. Phys. Chem. Chem. Phys. 2011, 13, 6925–6930. [Google Scholar] [CrossRef] [Green Version]
- Fielitz, P.; Schneider, O.; Borchardt, G.; Weidenfelder, A.; Fritze, H.; Shi, J.; Becker, K.D.; Ganschow, S.; Bertram, R. Oxygen-18 tracer diffusion in nearly stoichiometric single crystalline lithium niobate. Solid State Ionics 2011, 189, 1–6. [Google Scholar] [CrossRef]
- Weidenfelder, A.; Shi, J.; Fielitz, P.; Borchardt, G.; Becker, K.D.; Fritze, H. Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures. Solid State Ionics 2012, 225, 26–29. [Google Scholar] [CrossRef]
- Jian, Z.; Lu, X.; Fang, Z.; Hu, Y.S.; Zhou, J.; Chen, W.; Chen, L. LiNb3O8 as a Novel Anode Material for Lithium-Ion Batteries. Electrochem. Commun. 2011, 13, 1127–1130. [Google Scholar] [CrossRef]
- Kuganathan, N.; Kordatos, A.; Kelaidis, N.; Chroneos, A. Defects, Lithium Mobility and Tetravalent Dopants in the Li3NbO4 Cathode Material. Sci. Rep. 2019, 9, 2192. [Google Scholar] [CrossRef] [Green Version]
- Semiletov, S.A.; Bocharova, N.G.; Rakova, E.V. Decomposition of a Solid Solution on the Surface of Lithium Niobate Crystals: Structure, Morphology, and Mutual Orientation of Phases. In Growth of Crystals; Givargizov, E.I., Grinberg, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 17, pp. 95–103. [Google Scholar]
- Schirmer, O.F.; Von der Linde, D. Two-photon- and x-ray-induced Nb4+ and O− small polarons in LiNbO3. Appl. Phys. Lett. 1978, 33, 35–38. [Google Scholar] [CrossRef]
- Müller, H.; Schirmer, O.F. Microscopic structure of NbLi related defects in reduced undoped LiNbO3. Ferroelectrics 1992, 125, 319–324. [Google Scholar] [CrossRef]
- Reyher, H.-J.; Schulz, R.; Thiemann, O. Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques. Phys. Rev. B 1994, 50, 3609–3619. [Google Scholar] [CrossRef]
- Sweeney, K.L.; Halliburton, L.E. Oxygen vacancies in lithium niobate. Appl. Phys. Lett. 1983, 43, 336–338. [Google Scholar] [CrossRef]
- Halliburton, L.E.; Sweeney, K.L.; Chen, C.Y. Electron spin resonance and optical studies of point defects in lithium niobate. Nucl. Instr. Meth. Phys. Res. B 1984, 1, 344–347. [Google Scholar] [CrossRef]
- Ketchum, J.L.; Sweeney, K.L.; Halliburton, L.E.; Armington, A.F. Vacuum annealing effects in lithium niobate. Phys. Lett. A. 1983, 94, 450–453. [Google Scholar] [CrossRef]
- Arizmendi, L.; Cabrera, J.M.; Agulló-López, F. Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction. J. Phys. C Solid State Phys. 1984, 17, 515–529. [Google Scholar] [CrossRef]
- García-Cabañes, A.; Diéguez, E.; Cabrera, J.M.; Agulló-López, F. Contributing bands to the optical absorption of reduced LiNbO3: Thermal and optical excitation. J. Phys. Condens. Matter 1989, 1, 6453–6462. [Google Scholar] [CrossRef]
- Dutt, D.A.; Feigl, F.J.; DeLeo, G.G. Optical absorption and electron paramagnetic resonance studies of chemically reduced congruent lithium niobate. J. Phys. Chem. Solids 1990, 51, 407–415. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Imlau, M.; Merschjann, C.; Schoke, B. Electron small polarons and bipolarons in LiNbO3. J. Phys. Condens. Matter 2009, 21, 123201. [Google Scholar] [CrossRef]
- Koppitz, J.; Schirmer, O.F.; Kuznetsov, A.I. Thermal Dissociation of Bipolarons in Reduced Undoped LiNbO3. Europhys. Lett. 1987, 4, 1055–1059. [Google Scholar] [CrossRef]
- Holman, R.L. Novel uses of gravimetry in the processing of crystalline ceramics. In Processing of Crystalline Ceramics; Palmour, H., Davis, R.F., Hare, T.M., Eds.; Plenum: New York, NY, USA, 1978; pp. 343–358. [Google Scholar]
- Bordui, P.F.; Norwood, R.G.; Jundt, D.H.; Fejer, M.M. Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 1992, 71, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Nahm, H.; Park, C.H. First-principles study of microscopic properties of the Nb antisite in LiNbO3: Comparison to phenomenological polaron theory. Phys. Rev. B 2008, 78, 184108. [Google Scholar] [CrossRef]
- Li, Y.; Schmidt, W.G.; Sanna, S. Intrinsic LiNbO3 point defects from hybrid density functional calculations. Phys. Rev. B 2014, 89, 09411. [Google Scholar] [CrossRef]
- Li, Y.; Sanna, S.; Schmidt, W.G. Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model. J. Chem. Phys. 2014, 140, 234113. [Google Scholar] [CrossRef]
- Schmidt, F.; Kozub, A.L.; Biktagirov, T.; Eigner, C.; Silberhorn, C.; Schindlmayr, A.; Schmidt, W.G.; Gerstmann, U. Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Phys. Rev. Res. 2020, 2, 043002. [Google Scholar] [CrossRef]
- Faust, B.; Müller, H.; Schirmer, O.F. Free small polarons in LiNbO3. Ferroelectrics 1994, 153, 297–302. [Google Scholar] [CrossRef]
- Sugak, D.Y.; Syvorotka, I.I.; Buryy, O.A.; Yakhnevych, U.V.; Solskii, I.M.; Martynyuk, N.V.; Suhak, Y.; Suchocki, A.; Zhydachevskii, Y.; Jakiela, R. Spatial Distribution of Optical Coloration in Single Crystalline LiNbO3 after High-Temperature H2/Air Treatments. Opt. Mater. 2017, 70, 106–115. [Google Scholar] [CrossRef]
- Sweeney, K.L.; Halliburton, L.A.; Bryan, D.A.; Rice, R.R.; Gerson, R.; Tomaschke, H.E. Point defects in Mg-doped lithium niobate. J. Appl. Phys. 1985, 57, 1036–1044. [Google Scholar] [CrossRef]
- Corradi, G.; Krampf, A.; Messerschmidt, S.; Vittadello, L.; Imlau, M. Excitonic hopping-pinning scenarios in lithium niobate based on atomistic models: Different kinds of stretched exponential kinetics in the same system. J. Phys. Condens. Matter 2020, 32, 413005. [Google Scholar] [CrossRef]
- Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Unferdorben, M.; Dravecz, G.; Hajdara, I.; Szaller, Z.; et al. Growth, defect structure, and THz application of stoichiometric lithium niobate. Appl. Phys. Rev. 2015, 2, 040601. [Google Scholar] [CrossRef] [Green Version]
- Corradi, G.; Polgár, K.; Zaritskii, I.M.; Rakitina, L.G.; Derjugina, N.I. Characteristics of defect formation under γ-irradiation and heat treatment of pure and doped lithium niobate single crystals. Fiz. Tverd. Tela 1989, 31, 115–122. (in Russian). English translation: Sov. Phys. Solid State 1989, 31, 1540–1544. [Google Scholar]
- García-Cabañes, A.; Sanz-García, J.A.; Cabrera, J.M.; Agulló-López, F.; Zaldo, C.; Pareja, R.; Polgár, K.; Raksányi, K.; Földvári, I. Influence of stoichiometry on defect-related phenomena in LiNbO3. Phys. Rev. B 1988, 37, 6085–6091. [Google Scholar] [CrossRef]
- Kocsor, L.; Péter, L.; Corradi, G.; Kis, Z.; Gubicza, J.; Kovács, L. Mechanochemical Reactions of Lithium Niobate Induced by High-Energy Ball-Milling. Crystals 2019, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Moreno, C.A.; Farías-Mancilla, R.; Matutes-Aquino, J.A.; Elizalde-Galindo, J.; Espinosa-Magaña, F.; Hernández-González, J.; Hurtado-Macías, A. Magnetic behavior in LiNbO3 nanocrystallites caused by oxygen vacancies. J. Magn. Magn. Mater. 2014, 356, 82–86. [Google Scholar] [CrossRef]
- Hodgson, E.R.; Agulló-López, F. Oxygen vacancy centres induced by electron irradiation in LiNbO3. Solid State Commun. 1987, 64, 965–968. [Google Scholar] [CrossRef]
- Hodgson, E.R.; Agulló-López, F. High-energy electron irradiation of stoichiometric LiNbO3. J. Phys. Condens. Matter 1989, 1, 10015–10020. [Google Scholar] [CrossRef]
- Kovács, L.; Ruschhaupt, G.; Polgár, K.; Corradi, G.; Wöhlecke, M. Composition dependence of the UV absorption edge in lithium niobate. Appl. Phys. Lett. 1997, 70, 2801–2803. [Google Scholar] [CrossRef]
- Miki, T.; Hantehzadeh, M.R.; Halliburton, L.E. A new trapped-hole center in irradiated LiNbO3. J. Phys. Chem. Solids 1989, 50, 1003–1007. [Google Scholar] [CrossRef]
- Friedrich, M.; Riefer, A.; Sanna, S.; Schmidt, W.G.; Schindlmayr, A. Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory. J. Phys. Condens. Matter 2015, 27, 385402. [Google Scholar] [CrossRef] [Green Version]
- Riefer, A.; Friedrich, M.; Sanna, S.; Gerstmann, U.; Schindlmayr, A.; Schmidt, W.G. LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects. Phys. Rev. B 2016, 93, 075205. [Google Scholar] [CrossRef]
- Li, Y.; Schmidt, W.G.; Sanna, S. Defect complexes in congruent LiNbO3 and their optical signatures. Phys. Rev. B 2015, 91, 174106. [Google Scholar] [CrossRef] [Green Version]
- Sanna, S.; Schmidt, W.G. LiNbO3 surfaces from a microscopic perspective. J. Phys. Condens. Matter 2017, 29, 413001. [Google Scholar] [CrossRef]
- Araujo, R.M.; dos Santos Mattos, E.F.; Valerio, M.E.G.; Jackson, R.A. Computer Simulation of the Incorporation of V2+, V3+, V4+, V5+ and Mo3+, Mo4+, Mo5+, Mo6+ Dopants in LiNbO3. Crystals 2020, 10, 457. [Google Scholar] [CrossRef]
- Reitzig, S.; Rüsing, M.; Zhao, J.; Kirbus, B.; Mookherjea, S.; Eng, L.M. “Seeing Is Believing”—In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films. Crystals 2021, 11, 288. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corradi, G.; Kovács, L. ‘Horror Vacui’ in the Oxygen Sublattice of Lithium Niobate Made Affordable by Cationic Flexibility. Crystals 2021, 11, 764. https://doi.org/10.3390/cryst11070764
Corradi G, Kovács L. ‘Horror Vacui’ in the Oxygen Sublattice of Lithium Niobate Made Affordable by Cationic Flexibility. Crystals. 2021; 11(7):764. https://doi.org/10.3390/cryst11070764
Chicago/Turabian StyleCorradi, Gábor, and László Kovács. 2021. "‘Horror Vacui’ in the Oxygen Sublattice of Lithium Niobate Made Affordable by Cationic Flexibility" Crystals 11, no. 7: 764. https://doi.org/10.3390/cryst11070764
APA StyleCorradi, G., & Kovács, L. (2021). ‘Horror Vacui’ in the Oxygen Sublattice of Lithium Niobate Made Affordable by Cationic Flexibility. Crystals, 11(7), 764. https://doi.org/10.3390/cryst11070764