Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Materials and Process Setup
2.2. Microstructural Characterization and Mechanical Testing
2.3. Software and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
yield strength | |
AM | additive manufacturing |
AISI | American Iron and Steel Institute |
ASTM | American Society for Testing and Materials |
bcc | body-centered-cubic |
BD | build direction |
C | carbon |
Co | cobalt |
Cr | chromium |
DED | directed energy deposition |
DED-LB | laser-beam directed energy deposition |
E | Young’s modulus |
EAB | elongation at break |
EDM | electric discharge machining |
EDS | energy-dispersive X-ray spectroscopy |
fcc | face-centered-cubic |
Fe | iron |
H2O | water |
hcp | hexagonal-closest-packed |
HCl | hydrochloric acid |
HClO4 | perchloric acid |
HNO3 | nitric acid |
IQ | image quality |
IPFM | inverse pole figure mapping |
IPF | inverse pole figure |
LENS | laser-engineered net-shaping |
LD | longitudinal direction |
Mn | manganese |
Mo | molybdenum |
MMAM | multi-material additive manufacturing |
Ni | nickel |
OM | optical microscopy |
OES | optical emission spectroscopy |
P | phosphorus |
PM | phase mapping |
PBF | powder bed fusion |
PBF-EB | electron-beam powder bed fusion |
PBF-LB | laser-beam powder bed fusion |
S | sulfur |
Si | silicon |
SEM | scanning electron microscopy |
TD | transversal direction |
Ti | titanium |
UTS | ultimate tensile strength |
V | vanadium |
References
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA; Heidelberg, Germany; Dodrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Deutsches Institut für Normung e. V. Additive Manufacturing—General Principles—Terminology (ISO/ASTM DIS 52900:2018), German and English version prEN ISO/ASTM 52900:2018; Beuth Verlag GmbH: Berlin, Germany, 2018. [Google Scholar]
- Thijs, L.; Kempen, K.; Kruth, J.P.; van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013, 61, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Niendorf, T.; Leuders, S.; Riemer, A.; Richard, H.A.; Tröster, T.; Schwarze, D. Highly Anisotropic Steel Processed by Selective Laser Melting. Metall. Mater. Trans. B 2013, 44, 794–796. [Google Scholar] [CrossRef] [Green Version]
- Niendorf, T.; Brenne, F.; Schaper, M.; Riemer, A.; Leuders, S.; Reimche, W.; Schwarze, D.; Maier, H.J. Labelling additively manufactured parts by microstructural gradation—Advanced copy-proof design. Rapid Prototyp. J. 2016, 22, 630–635. [Google Scholar] [CrossRef]
- Popovich, V.A.; Borisov, E.V.; Popovich, A.A.; Sufiiarov, V.; Masaylo, D.V.; Alzina, L. Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 2017, 114, 441–449. [Google Scholar] [CrossRef]
- Rodriguez, J.; Hoefer, K.; Haelsig, A.; Mayr, P. Functionally Graded SS 316L to Ni-Based Structures Produced by 3D Plasma Metal Deposition. Metals 2019, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, F.; Huang, Z.; Jia, M.; Chen, G.; Ye, Y.; Lin, Y.; Liu, W.; Chen, B.; Shen, Q.; et al. Additive manufacturing of functionally graded materials: A review. Mater. Sci. Eng. A 2019, 764, 138209. [Google Scholar] [CrossRef]
- Zou, H.; Chen, M.; Li, Y. Rapid manufacturing of FGM components by using electromagnetic compressed plasma deposition. In Proceedings of the International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2015); Zhengzhou, China, 11–13 April 2015; Liu, J., Wang, Y., Xu, H., Eds.; Advances in Intelligent Systems Research; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Krishna, B.V.; Xue, W.; Bose, S. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J. Mater. Sci. Mater. Med. 2009, 20 (Suppl. 1), S29–S34. [Google Scholar] [CrossRef]
- Vamsi, K.B.; Xue, W.; Bose, S.; Bandyopadhyay, A. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. Acta Biomater. 2008, 4, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Dittrick, S.; Balla, V.K.; Bose, S.; Bandyopadhyay, A. In vitro Wear Rate and Co Ion Release of Compositionally and Structurally Graded CoCrMo-Ti6Al4V Structures. Mater. Sci. Eng. C Mater. Biol. Appl. 2011, 31, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Cuckler, J.M. The rationale for metal-on-metal total hip arthroplasty. Clin. Orthop. Relat. Res. 2005, 441, 132–136. [Google Scholar] [CrossRef]
- Facchini, L.; Magalini, E.; Robotti, P.; Molinari, A. Mechanical and microstructural characterization of astm f75 alloy produced by laser melting. J. Biomech. 2008, 41, S234. [Google Scholar] [CrossRef]
- Haan, J.; Asseln, M.; Zivcec, M.; Eschweiler, J.; Radermacher, R.; Broeckmann, C. Effect of subsequent Hot Isostatic Pressing on mechanical properties of ASTM F75 alloy produced by Selective Laser Melting. Powder Metall. 2015, 58, 161–165. [Google Scholar] [CrossRef]
- Mergulhão, M.V.; Podestá, C.E.; das Neves, M.D.M. Valuation of Mechanical Properties and Microstructural Characterization of ASTM F75 Co-Cr Alloy Obtained by Selective Laser Melting (SLM) and Casting Techniques. Mater. Sci. Forum 2017, 899, 323–328. [Google Scholar] [CrossRef]
- van Hooreweder, B.; Lietaert, K.; Neirinck, B.; Lippiatt, N.; Wevers, M. CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance. J. Mech. Behav. Biomed. Mater. 2017, 70, 60–67. [Google Scholar] [CrossRef]
- Dikova, T. Bending fracture of Co-Cr dental bridges, produced by additive technologies: Experimental investigation. Procedia Struct. Integr. 2018, 13, 461–468. [Google Scholar] [CrossRef]
- Song, C.; Zhang, M.; Yang, Y.; Wang, D.; Yu, J.K. Morphology and properties of CoCrMo parts fabricated by selective laser melting. Mater. Sci. Eng. A 2018, 713, 206–213. [Google Scholar] [CrossRef]
- Donkor, B.T.; Song, J.; Fu, Y.; Kattoura, M.; Mannava, S.R.; Steiner, M.A.; Vasudevan, V.K. Accelerated γ-face-centered cubic to ε-hexagonal close packed massive transformation in a laser powder bed fusion additively manufactured Co-29Cr-5Mo alloy. Scr. Mater. 2020, 179, 65–69. [Google Scholar] [CrossRef]
- Omar, M.A.; Baharudin, B.T.H.T.; Sulaiman, S.; Ismail, M.I.S.; Omar, M.A. Characterisation of elemental analysis, carbon sulphur analysis and impact test of stent manufacturing using medical grade ASTM F75 cobalt chromium (CoCrMo) by selective laser melting (SLM) technology. Adv. Mater. Process. Technol. 2020, 7, 200–215. [Google Scholar] [CrossRef]
- Sing, S.L.; Huang, S.; Yeong, W.Y. Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum. Mater. Sci. Eng. A 2020, 769, 138511. [Google Scholar] [CrossRef]
- Tonelli, L.; Fortunato, A.; Ceschini, L. CoCr alloy processed by Selective Laser Melting (SLM): Effect of Laser Energy Density on microstructure, surface morphology, and hardness. J. Manuf. Process. 2020, 52, 106–119. [Google Scholar] [CrossRef]
- Almanza, E.; Pérez, M.J.; Rodríguez, N.A.; Murr, L.E. Corrosion resistance of Ti-6Al-4V and ASTM F75 alloys processed by electron beam melting. J. Mater. Res. Technol. 2017, 6, 251–257. [Google Scholar] [CrossRef]
- Gong, X.; Li, Y.; Nie, Y.; Huang, Z.; Liu, F.; Huang, L.; Jiang, L.; Mei, H. Corrosion behaviour of CoCrMo alloy fabricated by electron beam melting. Corros. Sci. 2018, 139, 68–75. [Google Scholar] [CrossRef]
- Xiang, D.D.; Wang, P.; Tan, X.P.; Chandra, S.; Wang, C.; Nai, M.; Tor, S.B.; Liu, W.Q.; Liu, E. Anisotropic microstructure and mechanical properties of additively manufactured Co–Cr–Mo alloy using selective electron beam melting for orthopedic implants. Mater. Sci. Eng. A 2019, 765, 138270. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Shivaram, A.; Isik, M.; Avila, J.D.; Dernell, W.S.; Bose, S. Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants. Addit. Manuf. 2019, 28, 312–324. [Google Scholar] [CrossRef]
- Koopmann, J.; Voigt, J.; Niendorf, T. Additive Manufacturing of a Steel–Ceramic Multi-Material by Selective Laser Melting. Metall. Mater. Trans. B 2019, 50, 1042–1051. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, B.; Narayan, R.L.; Wang, P.; Song, X.; Zhao, H.; Ramamurty, U.; Qu, X. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit. Manuf. 2021, 40, 101926. [Google Scholar] [CrossRef]
- Jung, A. Die Jagd nach dem Schatz im Autoschrott. Spiegel 2019, 11, 73. [Google Scholar]
- Sommer, N.; Stredak, F.; Böhm, S. High-Speed Laser Cladding on Thin-Sheet-Substrates—Influence of Process Parameters on Clad Geometry and Dilution. Coatings 2021, 11, 952. [Google Scholar] [CrossRef]
- Calleja, A.; Tabernero, I.; Ealo, J.A.; Campa, F.J.; Lamikiz, A.; de Lacalle, L.N.L. Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding. Int. J. Adv. Manuf. Technol. 2014, 74, 1219–1228. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e. V. Metallische Werkstoffe—Zugversuch—Teil 1: Prüfverfahren bei Raumtemperatur (ISO/FDIS 6892-1:2019): German and English Version prEN ISO 6892-1:2019; Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- Sommer, N.; Kryukov, I.; Wolf, C.; Wiegand, M.; Kahlmeyer, M.; Böhm, S. On the Intergranular Corrosion Properties of Thin Ferritic Stainless Steel Sheets Welded by Fiber-Laser. Metals 2020, 10, 1088. [Google Scholar] [CrossRef]
- David, S.A.; Vitek, J.M. Correlation between solidification parameters and weld microstructures. Int. Mater. Rev. 1989, 34, 213–245. [Google Scholar] [CrossRef]
- Bauer, A. Hochtemperatureigenschaften Polykristalliner γ′-gehärteter Kobaltbasis-Superlegierungen. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg and FAU University Press ein Imprint der Universität Erlangen-Nürnberg, Erlangen, Germany, 2015. [Google Scholar]
- Alvarez, P.; Montealegre, M.A.; Cordovilla, F.; García-Beltrán, A.; Angulo, I.; Ocaña, J.L. Direct Generation of High-Aspect-Ratio Structures of AISI 316L by Laser-Assisted Powder Deposition. Materials 2020, 13, 5670. [Google Scholar] [CrossRef]
Alloy | C | Si | Mn | P | S | Cr | Mo | Ni | Fe | Co |
---|---|---|---|---|---|---|---|---|---|---|
AISI 316L | 0.03 | 0.7 | 0.5 | 0.015 | 0.011 | 16.5 | 2.1 | 13.0 | bal. | - |
CoCrMo | 0.05 | 0.9 | 0.9 | - | - | 27.2 | 8.2 | - | 0.3 | bal. |
(a) | ||||||||
Transition | Chemical Composition | |||||||
C | Si | Mn | Cr | Mo | Ni | Co | Fe | |
sharp | 0.01 | 0.82 | 0.72 | 24.9 | 6.58 | 2.02 | 51.3 | 13.4 |
smooth | 0.01 | 0.67 | 0.62 | 22.00 | 4.60 | 5.32 | 32.29 | 34.29 |
(b) | ||||||||
Transition | Phases | |||||||
sharp | bcc | hcp | Co3Mo | Cr3Si | M23C6 | Ni5Si2 | ||
smooth | bcc | CrNi | M6C | Mo3Si | Ni5Si2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, N.; Kluge, P.; Stredak, F.; Eigler, S.; Hill, H.; Niendorf, T.; Böhm, S. Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition. Crystals 2021, 11, 1043. https://doi.org/10.3390/cryst11091043
Sommer N, Kluge P, Stredak F, Eigler S, Hill H, Niendorf T, Böhm S. Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition. Crystals. 2021; 11(9):1043. https://doi.org/10.3390/cryst11091043
Chicago/Turabian StyleSommer, Niklas, Philipp Kluge, Florian Stredak, Sascha Eigler, Horst Hill, Thomas Niendorf, and Stefan Böhm. 2021. "Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition" Crystals 11, no. 9: 1043. https://doi.org/10.3390/cryst11091043
APA StyleSommer, N., Kluge, P., Stredak, F., Eigler, S., Hill, H., Niendorf, T., & Böhm, S. (2021). Additive Manufacturing of Compositionally-Graded AISI 316L to CoCrMo Structures by Directed Energy Deposition. Crystals, 11(9), 1043. https://doi.org/10.3390/cryst11091043