The Refraction Indices and Brewster Law in Stressed Isotropic Materials and Cubic Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cubic Crystals
3.1.1. Classes 23 and m3
3.1.2. Classes , 432, m3m
3.2. Isotropic Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brewster, D. Papers on Optics; Royal Society of London: London, UK, 1830. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 6th ed.; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Rastogi, P.K. Photomechanics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Brcic, V. Photoelasticity in Theory and Practice: Course Held at the Department for Mechanics of Deformable Bodies. Springer: Udine, Italy, 1974.
- Dally, J.W.; Riley, W.F. Experimental Stress Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Aben, H.; Guillemet, C. Photoelasticity of Glass; Springer: Berlin/Heidelberg, Germany, 1993; Available online: https://books.google.it/books?hl=it&lr=&id=1VfrCAAAQBAJ&oi=fnd&pg=PA3&dq=H.+Aben+and+C.+Guillemet,+Photoelasticity+of+glass,+Springer+Verlag,+1993.&ots=saM2uglK67&sig=F_wATsfK2x3hkR2DD4mdLWcj61M#v=onepage&q&f=false (accessed on 12 November 2018).
- Castellini, P.; Stroppa, L.; Paone, N. Laser sheet scattered light method for industrial measurement of thickness residual stress distribution in flat tempered glass. Opt. Lasers Eng. 2012, 50, 787–795. [Google Scholar] [CrossRef]
- Ramesh, K.; Lewis, G. Digital Photoelasticity: Advanced Techniques and Applications. Appl. Mech. Rev. 2002, 55, B69–B71. [Google Scholar] [CrossRef]
- Ajovalasit, A.; Petrucci, G.; Scafidi, M. Review of RGB photoelasticity. Opt. Lasers Eng. 2015, 68, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Hödemann, S.; Valdmann, A.; Anton, J.; Murata, T. Gradient scattered light method for non-destructive stress profile determination in chemically strengthened glass. J. Mater. Sci. 2016, 51, 5962–5978. [Google Scholar] [CrossRef]
- Frocht, M.M.; Leven, M.M. Photoelasticity: The Selected Scientific Papers of M.M. Frocht; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Sirotin, Y.I.; Shaskolskaya, M.P. Fundamentals of Crystal Physics; Mir Publishers: Moscow, Russia, 1982. [Google Scholar]
- Perelomova, N.V.; Tagieva, M.M. Problems in Crystal Physics with Solutions; Shaskol’skaya, M.P., Ed.; Mir Publishers: Moscow, Russia, 1983. [Google Scholar]
- Nye, J.F. Physical Properties of Crystals; Clarendon Press: Oxford, UK, 1985; Available online: https://global.oup.com/academic/product/physical-properties-of-crystals-9780198511656?cc=it&lang=en& (accessed on 23 October 2018).
- Wahlstrom, E.E. Optical Crystallography; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Daví, F. On the Bertin surfaces of photoelastic crystals. J. Opt. Soc. Am. A 2015, 32, 2323–2337. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, D.; Pietroni, P.; Davì, F. Isochromate fringes simulation by Cassini-like curves for photoelastic analysis of birefringent crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 603, 294–300. [Google Scholar] [CrossRef]
- Mytsyk, B.G.; Demyanyshyn, N.M.; Solskii, I.M.; Sakharuk, O.M. Piezo- and elasto-optic coefficients for calcium tungstate crystals. Appl. Opt. 2016, 55, 9160–9165. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, D.; Daví, F.; Montalto, L. On the photoelastic constants for anisotropic stressed crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 947, 162782. [Google Scholar] [CrossRef]
- Rinaldi, D.; Daví, F.; Montalto, L. On the photoelastic constants and the Brewster law for stressed tetragonal crystals. Math. Methods Appl. Sci. 2018, 41, 3103–3116. [Google Scholar] [CrossRef]
- Natali, P.P.; Montalto, L.; Daví, F.; Mengucci, P.; Ciriaco, A.; Paone, N.; Rinaldi, D. Theoretical and experimental evaluation of piezo-optic parameters and photoelastic constant in tetragonal PWO. Appl. Opt. 2018, 57, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Natali, P.; Montalto, L.; Scalise, L.; Davì, F.; Paone, N.; Rinaldi, D. Fringe modelling and Photoelastic stress Measurement method in tetragonal PWO observed in the plane normal to a crystallographic a-axis. J. Instrum. 2020, 15, P09037. [Google Scholar] [CrossRef]
- Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Davì, F. Photoelastic sphenoscopic analysis of crystals. Rev. Sci. Instrum. 2016, 87, 15113. [Google Scholar] [CrossRef] [PubMed]
- Natali, P.P.; Montalto, L.; Rinaldi, D.; Davi, F.; Paone, N.; Scalise, L. Noninvasive Inspection of Anisotropic Crystals: Innovative Photoelasticity-Based Methods. IEEE Trans. Nucl. Sci. 2018, 65, 2203–2207. [Google Scholar] [CrossRef]
- Montalto, L.; Paone, N.; Rinaldi, D.; Scalise, L. Inspection of birefringent media by photoelasticity: From diffuse light polariscope to laser conoscopic technique. Opt. Eng. 2015, 54, 81210. [Google Scholar] [CrossRef]
- Montalto, L.; Scalise, L.; Rinaldi, D.; Paone, N. A Photoelasticity Measurement Set-Up for the Assessment of Residual Stresses in Scintillating Crystals. In Proceedings of the 3rd National Congress of Italian Mechanics Coordination, Naples, Italy, 30 June–1 July 2014; pp. 4–8. [Google Scholar]
- Montalto, L.; Natali, P.; Davi, F.; Mengucci, P.; Paone, N.; Rinaldi, D. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: Structural assessment and a novel photoelastic stress analysis. J. Instrum. 2017, 12, P12035. [Google Scholar] [CrossRef] [Green Version]
- Kamada, K.; Yanagida, T.; Endo, T.; Tsutumi, K.; Usuki, Y.; Nikl, M.; Fujimoto, Y.; Yoshikawa, A. 2-inch size single crystal growth and scintillation properties of new scintillator. In Proceedings of the IEEE Symposium on Nuclear Science (NSS/MIC), Valencia, Spain, 23–29 October 2011; pp. 1927–1929. [Google Scholar] [CrossRef]
- Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y.; Di Falco, S.; Diociaiuti, E.; et al. The Mu2e undoped CsI crystal calorimeter. J. Instrum. 2018, 13, C02037. [Google Scholar] [CrossRef] [Green Version]
- Montalto, L.; Paone, N.; Scalise, L.; Rinaldi, D. A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging. Rev. Sci. Instrum. 2015, 86, 63102. [Google Scholar] [CrossRef] [PubMed]
- Ciriaco, A.; Davı, F.; Lebeau, M.; Majni, G.; Paone, N.; Pietroni, P.; Rinaldi, D. PWO photo-elastic parameter calibration by laser-based polariscope. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 570, 55–60. [Google Scholar] [CrossRef]
- Daví, F. Exact and linearized refractive index stress-dependence in anisotropic photoelastic crystals. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190854. [Google Scholar] [CrossRef] [PubMed]
- Davì, F. On the generalization of the Brewster Law. Math. Mech. Complex Syst. 2020, 8, 29–46. [Google Scholar] [CrossRef]
- Sokolnikoff, I.S. Mathematical Theory of Elasticity; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, D.; Natali, P.P.; Montalto, L.; Davì, F. The Refraction Indices and Brewster Law in Stressed Isotropic Materials and Cubic Crystals. Crystals 2021, 11, 1104. https://doi.org/10.3390/cryst11091104
Rinaldi D, Natali PP, Montalto L, Davì F. The Refraction Indices and Brewster Law in Stressed Isotropic Materials and Cubic Crystals. Crystals. 2021; 11(9):1104. https://doi.org/10.3390/cryst11091104
Chicago/Turabian StyleRinaldi, Daniele, Pier Paolo Natali, Luigi Montalto, and Fabrizio Davì. 2021. "The Refraction Indices and Brewster Law in Stressed Isotropic Materials and Cubic Crystals" Crystals 11, no. 9: 1104. https://doi.org/10.3390/cryst11091104