Charge Carrier Recombination Dynamics in MAPb(Br1−yIy)3 Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Growth of MAPb(Br1−yIy)3 Perovskite Single Crystals
2.3. Steady-State and Time-Resolved Photoluminescence Measurements
2.4. Time-Resolved Microwave Conductivity Measurements
2.5. X-ray Diffraction Measurements
2.6. Steady-State Absorption Measurements
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Yang, C.; Lunt, R.R. Halide Perovskites for Selective Ultraviolet-Harvesting Transparent Photovoltaics. Joule 2018, 2, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.-S.; Chen, B.-X.; Wang, X.-D.; Kuang, D.-B.; Su, C.-Y. A Micron-Scale Laminar MAPbBr3 Single Crystal for an Efficient and Stable Perovskite Solar Cell. Chem. Commun. 2017, 53, 5163–5166. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Hou, Y.; Nozariasbmarz, A.; Yang, D.; Yoon, J.; Zheng, L.; Wang, K.; Wang, K.; Ramakrishna, S.; Priya, S. Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration. ACS Energy Lett. 2021, 6, 3044–3052. [Google Scholar] [CrossRef]
- Forgács, D.; Gil-Escrig, L.; Pérez-Del-Rey, D.; Momblona, C.; Werner, J.; Niesen, B.; Ballif, C.; Sessolo, M.; Bolink, H.J. Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602121. [Google Scholar] [CrossRef] [Green Version]
- Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P.M.; Deschler, F.; Hoye, R.L.Z.; Gödel, K.C.; Bein, T.; Docampo, P.; et al. Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095–6101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Tu, C.; Xue, C.; Wu, J.; Cao, Y.; Zou, W.; Xu, W.; Wen, K.; Zhang, J.; Chen, Y.; et al. Low Roll-Off and High Stable Electroluminescence in Three-Dimensional FAPbI3 Perovskites with Bifunctional-Molecule Additives. Nano Lett. 2021, 21, 3738–3744. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, Y.; Xu, Q.; Wei, H.; Fang, Y.; Wang, Q.; Deng, Y.; Li, T.; Gruverman, A.; Cao, L.; et al. Monolithic Integration of Hybrid Perovskite Single Crystals with Heterogenous Substrate for Highly Sensitive X-ray Imaging. Nat. Photonics 2017, 11, 315–321. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.-Y.; Jeong, D.-N.; Seo, J.-Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.-G. Printable Organometallic Perovskite Enables Large-Area, Low-Dose X-ray Imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xiong, M.; Fan, K.; Bao, C.; Xin, D.; Pan, Z.; Fei, L.; Huang, H.; Zhou, L.; Yao, K.; et al. Synergistic Strain Engineering of Perovskite Single Crystals for Highly Stable and Sensitive X-ray Detectors with Low-Bias Imaging and Monitoring. Nat. Photonics 2022, 16, 575–581. [Google Scholar] [CrossRef]
- Tan, M.J.H.; Ravichandran, D.; Ang, H.L.; Ong, E.W.Y.; Lim, C.Q.X.; Kam, G.M.Q.; Kumar, A.P.; Tan, Z. Magneto-Fluorescent Perovskite Nanocomposites for Directed Cell Motion and Imaging. Adv. Healthcare Mater. 2019, 8, 1900859. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, J.; Chen, H.; Tian, N.; Li, L.; Qu, Y.; Huang, Y.; Luo, Y.; Tan, W. Near-Infrared Photodetectors Based on CH3NH3PbI3 Perovskite Single Crystals for Bioimaging Applications. J. Mater. Chem. C 2022, 10, 274–280. [Google Scholar] [CrossRef]
- McMeekin, D.P.; Mahesh, S.; Noel, N.K.; Klug, M.T.; Lim, J.; Warby, J.H.; Ball, J.M.; Herz, L.M.; Johnston, M.B.; Snaith, H.J. Solution-Processed All-Perovskite Multi-Junction Solar Cells. Joule 2019, 3, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Yang, S.; Cao, B.; Tao, X.; Chen, Z. Single Crystal Perovskite Solar Cells: Development and Perspectives. Adv. Funct. Mater. 2020, 30, 1905021. [Google Scholar] [CrossRef]
- Pazos-Outón, L.M.; Szumilo, M.; Lamboll, R.; Richter, J.M.; Crespo-Quesada, M.; Abdi-Jalebi, M.; Beeson, H.J.; Vrućinić, M.; Alsari, M.; Snaith, H.J.; et al. Photon Recycling in Lead Iodide Perovskite Solar Cells. Science 2016, 351, 1430–1433. [Google Scholar] [CrossRef]
- Wei, H.; DeSantis, D.; Wei, W.; Deng, Y.; Guo, D.; Savenije, T.J.; Cao, L.; Huang, J. Dopant Compensation in Alloyed CH3NH3PbBr3−xClx Perovskite Single Crystals for Gamma-ray Spectroscopy. Nat. Mater. 2017, 16, 826–833. [Google Scholar] [CrossRef]
- Cho, J.; Kamat, P.V. How Chloride Suppresses Photoinduced Phase Segregation in Mixed Halide Perovskites. Chem. Mater. 2020, 32, 6206–6212. [Google Scholar] [CrossRef]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics. Chem. Sci. 2015, 6, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Schröder, V.R.F.; Hermerschmidt, F.; Helper, S.; Rehermann, C.; Ligorio, G.; Näsström, H.; Unger, E.L.; List-Kratochvil, E.J.W. Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelength-Selective Photodetectors. Adv. Eng. Mater. 2022, 24, 2101111. [Google Scholar] [CrossRef]
- Dunlap-Shohl, W.A.; Zhou, Y.; Padture, N.P.; Mitzi, D.B. Synthetic Approaches for Halide Perovskite Thin Films. Chem. Rev. 2018, 119, 3193–3295. [Google Scholar] [CrossRef]
- DuBose, J.T.; Kamat, P.V. Hole Trapping in Halide Perovskites Induces Phase Segregation. Acc. Mater. Res. 2022, 3, 761–771. [Google Scholar] [CrossRef]
- Guo, D.; Bartesaghi, D.; Wei, H.; Hutter, E.M.; Huang, J.; Savenije, T.J. Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites. J. Phys. Chem. Lett. 2017, 8, 4258–4263. [Google Scholar] [CrossRef]
- Chen, C.; Hu, X.; Lu, W.; Chang, S.; Shi, L.; Li, L.; Zhong, H.; Han, J.-B. Elucidating the Phase Transitions and Temperature-Dependent Photoluminescence of MAPbBr3 Single Crystal. J. Phys. D Appl. Phys. 2018, 51, 045105. [Google Scholar] [CrossRef]
- Priante, D.; Dursun, I.; Alias, M.S.; Shi, D.; Melnikov, V.A.; Ng, T.K.; Mohammed, O.F.; Bakr, O.M.; Ooi, B.S. The Recombination Mechanisms Leading to Amplified Spontaneous Emission at the True-Green Wavelength in CH3NH3PbBr3 Perovskites. Appl. Phys. Lett. 2015, 106, 081902. [Google Scholar] [CrossRef] [Green Version]
- Motti, S.G.; Gandini, M.; Barker, A.J.; Ball, J.M.; Srimath Kandada, A.R.; Petrozza, A. Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors. ACS Energy Lett. 2016, 1, 726–730. [Google Scholar] [CrossRef]
- Rehman, W.; Milot, R.L.; Eperon, G.E.; Wehrenfennig, C.; Boland, J.L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites. Adv. Mater. 2015, 27, 7938–7944. [Google Scholar] [CrossRef] [Green Version]
- Caselli, V.M.; Savenije, T.J. Quantifying Charge Carrier Recombination Losses in MAPbI3/C60 and MAPbI3/Spiro-OMeTAD with and without Bias Illumination. J. Phys. Chem. Lett. 2022, 13, 7523–7531. [Google Scholar] [CrossRef]
- Wang, W.; Su, J.; Zhang, L.; Lei, Y.; Wang, D.; Lu, D.; Bai, Y. Growth of Mixed-Halide Perovskite Single Crystals. CrystEngComm 2018, 20, 1635–1643. [Google Scholar] [CrossRef]
- Nakamura, Y.; Shibayama, N.; Hori, A.; Matsushita, T.; Segawa, H.; Kondo, T. Crystal Systems and Lattice Parameters of CH3NH3Pb(I1–xBrx)3 Determined Using Single Crystals: Validity of Vegard’s Law. Inorg. Chem. 2020, 59, 6709–6716. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Zhang, J.; Yang, Z.; Yang, D.; Yu, F.; Sun, J.; Zhao, C.; Yao, Z.; Wang, B.; et al. 120 Mm Single-Crystalline Perovskite and Wafers: Towards Viable Applications. Sci. China Chem. 2017, 60, 1367–1376. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, Y.; Yang, Z.; Liu, S. (Frank) Perovskite CH3NH3Pb(BrxI1−x)3 Single Crystals with Controlled Composition for Fine-Tuned Bandgap towards Optimized Optoelectronic Applications. J. Mater. Chem. C 2016, 4, 9172–9178. [Google Scholar] [CrossRef]
- Hu, H.; Singh, M.; Wan, X.; Tang, J.; Chu, C.-W.; Li, G. Nucleation and Crystal Growth Control for Scalable Solution-Processed Organic-Inorganic Hybrid Perovskite Solar Cells. J. Mater. Chem. A 2020, 8, 1578–1603. [Google Scholar] [CrossRef]
- Ahmad, M.; Shahzad, N.; Tariq, M.A.; Sattar, A.; Pugliese, D. Investigating the Sequential Deposition Route for Mixed Cation Mixed Halide Wide Bandgap Perovskite Absorber Layer. Energies 2021, 14, 8401. [Google Scholar] [CrossRef]
- Liao, Q.; Hu, K.; Zhang, H.; Wang, X.; Yao, J.; Fu, H. Perovskite Microdisk Microlasers Self-Assembled from Solution. Adv. Mater. 2015, 27, 3405–3410. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, C.; Xu, C.; Fan, P.; Qin, F.; Gowri Manohari, A.; Lu, J.; Shi, Z.; Xu, Q.; Pan, A. Crystal Structure and Electron Transition Underlying Photoluminescence of Methylammonium Lead Bromide Perovskites. J. Mater. Chem. C 2017, 5, 7739–7745. [Google Scholar] [CrossRef]
- Trimpl, M.J.; Wright, A.D.; Schutt, K.; Buizza, L.R.V.; Wang, Z.; Johnston, M.B.; Snaith, H.J.; Müller-Buschbaum, P.; Herz, L.M. Charge-Carrier Trapping and Radiative Recombination in Metal Halide Perovskite Semiconductors. Adv. Funct. Mater. 2020, 30, 2004312. [Google Scholar] [CrossRef]
- Euvrard, J.; Yan, Y.; Mitzi, D.B. Electrical Doping in Halide Perovskites. Nat. Rev. Mater. 2021, 6, 531–549. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, X.; Su, X.; Zou, X.; Mante, P.-A.; Borgström, M.T.; Yartsev, A. Carrier Recombination Processes in Gallium Indium Phosphide Nanowires. Nano Lett. 2017, 17, 4248–4254. [Google Scholar] [CrossRef]
y | Molar Ratio of Solute | Solvent | Concentration [M] | Growth Temperature [°C] |
---|---|---|---|---|
0 | MABr:PbBr2 = 1:1 | DMF | 1.60 | 50 |
0.73 | MABr:PbBr2:MAI:PbI2 = 2:2:1:1 | GBL | 1.67 | 55 |
0.82 | MABr:PbBr2:MAI:PbI2 = 1:1:2:2 | GBL | 1.67 | 55 |
1 | MAI:PbI2 = 1:1 | GBL | 1.23 | 90 |
y | TRPL | TRMC | ktrap-e [×106 s−1] b | ktrap-h [×106 s−1] c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | τ1 [ns] | A2 | τ2 [ns] | τA a [ns] | A1 | τ1 [ns] | A2 | τ2 [ns] | A3 | τ3 [ns] | |||
0 | 0.54 | 2.2 | 0.46 | 59.4 | 28.5 | 0.13 | 2.2 | 0.26 | 59.4 | 0.61 | 1720 | 35.1 | 0.6 |
0.73 | 0.59 | 2.0 | 0.41 | 18.4 | 8.7 | 0.06 | 2.0 | 0.66 | 18.4 | 0.28 | 1182 | 114.9 | 0.8 |
0.82 | 0.55 | 2.0 | 0.45 | 15.5 | 8.1 | 0.43 | 2.0 | 0.49 | 15.5 | 0.08 | 809 | 123.5 | 1.2 |
1 | 0.45 | 2.4 | 0.55 | 60.7 | 34.5 | 0.01 | 2.4 | 0.80 | 60.7 | 0.19 | 9554 | 29.0 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Tao, T.; Shu, J.; Dang, W.; Pan, S.; Zhang, W. Charge Carrier Recombination Dynamics in MAPb(Br1−yIy)3 Single Crystals. Crystals 2022, 12, 1425. https://doi.org/10.3390/cryst12101425
Xiao Z, Tao T, Shu J, Dang W, Pan S, Zhang W. Charge Carrier Recombination Dynamics in MAPb(Br1−yIy)3 Single Crystals. Crystals. 2022; 12(10):1425. https://doi.org/10.3390/cryst12101425
Chicago/Turabian StyleXiao, Zijie, Tingting Tao, Jingting Shu, Wei Dang, Shusheng Pan, and Wei Zhang. 2022. "Charge Carrier Recombination Dynamics in MAPb(Br1−yIy)3 Single Crystals" Crystals 12, no. 10: 1425. https://doi.org/10.3390/cryst12101425
APA StyleXiao, Z., Tao, T., Shu, J., Dang, W., Pan, S., & Zhang, W. (2022). Charge Carrier Recombination Dynamics in MAPb(Br1−yIy)3 Single Crystals. Crystals, 12(10), 1425. https://doi.org/10.3390/cryst12101425