Microstructure, Mechanical and Thermal Properties of Mg-0.5Ca-xZr Alloys
Abstract
:1. Introduction
2. Material Preparation and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
3.3. Thermal Conductivity
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, F.; Chen, Z. Calorimetric Technology and Determination of Thermal Properties; China University of Science and Technology Press: Hefei, China, 2009. [Google Scholar]
- Easton, M.A.; Zhu, S.; Abbott, T.B.; Dargusch, M.; Murray, M.; Savage, G.; Hort, N.; Gibson, M.A. Evaluation of magnesium die-casting alloys for elevated temperature applications: Castability. Adv. Eng. Mater. 2016, 18, 953–962. [Google Scholar] [CrossRef]
- Li, P.; Tang, B.; Kandalova, E.G. Microstructure and properties of AZ91D alloy with Caadditions. Mater. Lett. 2005, 59, 671–675. [Google Scholar] [CrossRef]
- Rudajevová, A.; Staněk, M.; Lukáć, P. Determination of thermal diffusivity and thermal conductivity of Mg-Alalloys. Mater. Sci. Eng. A 2003, 341, 152–157. [Google Scholar] [CrossRef]
- Rudajevová, A.; Lukáč, P. Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mater. Sci. Eng. A 2005, 397, 16–21. [Google Scholar] [CrossRef]
- Friedrich, H.E.; Mordike, B.L. Magnesium Technology: Metallurgy, Design Data, Application; Springer: Berlin/Heidelberg, Germany, 2006; pp. 63–107. [Google Scholar]
- Peng, J.; Zhong, L.; Wang, Y.; Lu, Y.; Pan, F. Effect of extrusion temperature on the microstructure and thermal conductivity of Mg-2.0Zn-1.0Mn-0.2C ealloys. Mater. Des. 2015, 87, 914–919. [Google Scholar] [CrossRef]
- Hou, L.G.; Wu, R.Z.; Wang, X.D.; Zhang, J.H.; Zhang, M.L.; Dong, A.P.; Sun, B.D. Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites. J. Alloys Compd. 2017, 695, 2820–2826. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Hou, J.; Du, W. A review on thermalc onductivity of magnesium and its alloys. J. Magnes. Alloys 2020, 8, 78–90. [Google Scholar] [CrossRef]
- Peng, J.; Zhong, L.; Wang, Y.; Yang, J.; Lu, Y.; Pan, F. Effect of Ce additionon thermal conductivity of Mg-2Zn-Mn alloy. J. Alloys Compd. 2015, 639, 556–562. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G. Thermal conductivity of as-cast and as-extruded binary Mg–Al alloys. J. Alloys Compd. 2014, 608, 19–24. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G.; Xu, S.W. Thermal conductivity of as-cast and as-extruded binary Mg–Zn alloys. J. Alloys Compd. 2015, 621, 250–255. [Google Scholar] [CrossRef]
- Pan, H.; Pan, F.; Yang, R.; Peng, J.; Zhao, C.; She, J.; Guo, Z.; Tang, A. Thermal and electrical conductivity of binary magnesium alloys. J. Mater. Sci. 2014, 49, 3107–3124. [Google Scholar] [CrossRef]
- Zhong, L.; Peng, J.; Sun, S.; Wang, Y.; Lu, Y.; Pan, F. Microstructure and thermal conductivity of as-cast and as-solutionized Mg-rare-earth binary alloys. J. Mater. Sci. Technol. 2017, 33, 1240–1248. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Xiao, S.; Chen, Y. Effects of Sn, Ca additions on thermal conductivity of Mg matrix alloys. Mater. Sci. Technol. 2016, 32, 581–587. [Google Scholar] [CrossRef]
- Rudajevová, A.; Buch, F.; von Mordike, B.L. Thermal diffusivity and thermal conductivity of MgSc alloys. J. Alloys Compd. 1999, 292, 27–30. [Google Scholar] [CrossRef]
- Oh, G.-Y.; Jung, Y.-G.; Yang, W.; Kim, S.K. Investigation of thermal conductivity and mechanical properties of Mg-4Zn-0.5Ca-xY alloys. Mater. Trans. 2015, 56, 1887–1892. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.-L.; Liu, J.; Luo, D.-M.; Chen, D.-C. Evaluation of the effect of Nd content and extrusion process on thermal conductivity of Mg-Mn-Zn-Nd Alloys. Crystals 2018, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Ying, T.; Chi, H.; Zheng, M.; Li, Z.; Uher, C. Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys. Acta Mater. 2014, 80, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Li, D.; Tao, Y.; Zhou, L.; Li, L.; Zeng, X. Effect of Nd content and heat treatment on the thermal conductivity of Mg-Nd alloys. J. Alloys Compd. 2016, 685, 114–121. [Google Scholar] [CrossRef]
- Su, C.; Li, D.; Luo, A.A.; Ying, T.; Zeng, X. Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study. J. Alloys Compd. 2018, 747, 431–437. [Google Scholar] [CrossRef]
- Fang, X.; Yi, D.; Nie, J.; Zhang, X.; Wang, B.; Xiao, L. Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy. J. Alloys Compd. 2009, 470, 311–316. [Google Scholar] [CrossRef]
- Elsayed, A.; Sediako, D.; Ravindran, C. Solidification behavior of Mg-Zn and Mg-Zn-Zr alloys using in-situ neutron diffraction. J. Mater. Eng. Perform. 2015, 24, 2250–2255. [Google Scholar] [CrossRef]
- Mordike, B.L. Creep-resistant magnesium alloys. Mater. Sci. Eng. A 2002, 324, 103–112. [Google Scholar] [CrossRef]
- Hirai, K.; Somekawa, H.; Takigawa, Y.; Higashi, K. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater. Sci. Eng. A 2005, 403, 276–280. [Google Scholar] [CrossRef]
- Luo, A.; Pekguleryuz, M.O. Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 1994, 20, 5259–5271. [Google Scholar] [CrossRef]
- Wang, Q.D.; Chen, W.Z.; Zeng, X.Q.; Lu, Y.Z.; Ding, W.J.; Zhu, Y.P.; Xu, X.P.; Mabuchi, M. Effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. J. Mater. Sci. 2000, 36, 3035–3040. [Google Scholar]
- Xu, S.W.; Matsumoto, N.; Yamamoto, K.; Kamado, S.; Honma, T.; Kojima, Y. High temperature tensile properties of as-cast Mg–Al–Ca alloys. Mater. Sci. Eng. A 2009, 509, 105–110. [Google Scholar] [CrossRef]
- Suzuki, A.; Saddock, N.D.; Terbush, J.R.; Powell, B.R.; Jones, J.W.; Pollock, T.M. Precipitation strengthening of a Mg–Al–Ca-based AXJ530 die-cast alloy. Metall. Mater. Trans. A 2008, 39, 696–702. [Google Scholar] [CrossRef]
- Lee, Y.C.; Dahle, A.K. The role of solute in grain refinement of magnesium. Metall. Mater. Trans 2000, 31A, 2895–2906. [Google Scholar] [CrossRef]
- Chang, S.Y.; Tezuka, H.; Kamio, A. Mechanical properties structure of ignition-proof Mg-Ca-Zr alloys produced by squeeze casting. Mater. Trans. JIM 1997, 38, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Pan, F.; Chen, X.; Luo, N.; Han, B.; Zhou, T. Thermal conductivity and mechanical properties of Sm-containing Mg-Zn-Zr alloys. Mater. Sci. Technol. 2018, 34, 138–144. [Google Scholar] [CrossRef]
- Hu, L.-F.; Gu, Q.-F.; Li, Q.; Zhang, J.-Y.; Wu, G.-X. Effect of extrusion temperature on microstructure, thermal conductivity and mechanical properties of a Mg-Ce-Zn-Zr alloy. J. Alloys Compd. 2018, 741, 1222–1228. [Google Scholar] [CrossRef]
- Zhu, W.-F.; Luo, Q.; Zhang, J.-Y.; Li, Q. Phase equilibria of Mg-La-Zr system and thermal conductivity of selected alloys. J. Alloys Compd. 2018, 731, 784–795. [Google Scholar] [CrossRef]
- Li, B.; Hou, L.; Wu, R.; Zhang, J.; Li, X.; Zhang, M. Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. J. Alloys Compd. 2017, 722, 772–777. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Deng, K.K.; Xu, F.J.; Wu, K.; Zheng, M.Y. Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions. J. Alloys Compd. 2014, 617, 979–987. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, E.B.; Nan, X.L.; Zhang, L.; Guan, Z.P.; Jiang, Q.C. A comparison of microstructure and mechanical properties of Mg-9Al-1Zn sheets rolled from as-cast, cast-rolling and as-extruded alloys. Mater. Des. 2016, 89, 167–172. [Google Scholar] [CrossRef]
- Kang, J.; Sun, X.; Deng, K.; Xu, F.; Zhang, X.; Bai, Y. HighstrengthMg-9Alserialalloyprocessedbyslowextrusion. Mater. Sci. Eng. A 2017, 697, 211–216. [Google Scholar] [CrossRef]
- Pan, H.; Pan, F.; Peng, J.; Gou, J.; Tang, A.; Wu, L.; Dong, H. High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. J. Alloys Compd. 2013, 578, 493–500. [Google Scholar] [CrossRef]
- Huang, Q.; Tang, A.; Ma, S.; Pan, H.; Song, B.; Gao, Z.; Rashad, M.; Pan, F. Enhancing thermal conductivity of Mg-Sn alloy sheet by cold rolling and aging. J. Mater. Eng. Perform. 2016, 25, 2356–2363. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Z.; Liu, H.; Chen, Y.; Ding, W.; Xiao, S. Electrical and thermal conductivity in Mg–5Sn alloy at different aging status. Mater. Des. 2015, 84, 48–52. [Google Scholar] [CrossRef]
- Leitner, J.; Vońka, P.; Sedmidubský, D.; Svoboda, P. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 2010, 497, 7–13. [Google Scholar] [CrossRef]
- Lindemann, A.; Schmidt, J.; Todte, M.; Zeuner, T. Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range. Thermochim. Acta 2002, 382, 269–275. [Google Scholar] [CrossRef]
- Aa, N.H.; Clark, J. Phase Diagrams of Binary Magnesium Alloys; ASM International: Metals Park, OH, USA, 1988. [Google Scholar]
- Oh-Ishi, K.; Watanabe, R.; Mendis, C.; Hono, K. Age-hardening response of Mg-0.3 at.% Ca alloy with different Zn contents. Mater. Sci. Eng. A 2009, 526, 177–184. [Google Scholar] [CrossRef]
- Magnesium: Crystal Structures. Available online: https://www.webelements.com/magnesium/crystal_structure.html (accessed on 25 January 2022).
- Nie, J.F.; Muddle, B.C. Precipitation hardening of Mg-Ca(-Zn) alloys. Scr. Mater. 1997, 37, 1475–1482. [Google Scholar] [CrossRef]
- BBerman, R. Thermal Conduction in Solids; Clarendon Press: Oxford, UK, 1976. [Google Scholar]
- Yuan, J.; Zhang, K.; Li, T.; Li, X.; Li, Y.; Ma, M.; Luo, P. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy. Mater. Des. 2012, 40, 257–261. [Google Scholar] [CrossRef]
- Trojanová, Z.; Halmešová, K.; Džugan, J.; Drozd, Z.; Minárik, P.; Lukáč, P. Effect of equal channel angular extrusion on thermal conductivity of an AX52 magnesium alloy. Crystals 2020, 10, 497. [Google Scholar] [CrossRef]
- Yu, K.; Li, W.; Zhao, J.; Ma, Z.; Wang, R. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy. Scripta Mater. 2003, 48, 1319–1323. [Google Scholar] [CrossRef]
- Eivani, A.R.; Ahmed, H.; Zhou, J.; Duszczyk, J. Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy. Metall. Mater. Trans. A 2009, 40, 2435–2446. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhang, K.; Zhang, X.; Li, X.; Li, T.; Li, Y.; Ma, M.; Shi, G. Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J. Alloys Compd. 2013, 578, 32–36. [Google Scholar] [CrossRef]
- Fink, R.; Gmhb, O.F.; Schorndorf. Die-cast magnesium alloys. In Magnesium Alloys and Technology; Kainer, K.U., Ed.; Wiley-VCH GmbH &Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
Alloy Code | 12 h | 24 h | 48 h |
---|---|---|---|
Mg-0.5Ca-0.5Zr | 17 ± 6 | 22 ± 6 | 27 ± 7 |
Mg-0.5Ca-1Zr | 15 ± 5 | 21 ± 6 | 25 ± 7 |
Composition (wt.%) | Lattice Parameters | ||
---|---|---|---|
a/nm | c/nm | c/a | |
Pure Mg [46] | 0.32094 | 0.52108 | 1.6236 |
Cast Mg-0.5Ca-0.5Zr alloy | 0.320936 | 0.521120 | 1.62375 |
Cast Mg-0.5Ca-1 Zr alloy | 0.320968 | 0.521230 | 1.62393 |
Extruded Mg-0.5Ca-0.5Zr alloy | 0.320930 | 0.521237 | 1.62415 |
Extruded Mg-0.5Ca-1 Zr alloy | 0.320922 | 0.521581 | 1.62526 |
Alloy Cod | YS | UTS | TC | Reference |
---|---|---|---|---|
(MPa) | (MPa) | (W/(m·k)) | ||
Extruded Mg-0.5Ca-0.5Zr alloy | 125 | 185 | 95.4 | this study |
Extruded Mg-0.5Ca-1Zr alloy | 152 | 215 | 91.5 | this study |
Mg-0.5Ca-0.5Zr alloy aged for 48 h | 162 | 202 | 125.9 | this study |
Mg-0.5Ca-1Zr alloy aged for 48 h | 186 | 236 | 114.8 | this study |
AM60 | 115 | 205 | 65 | [4,26] |
AM20 | 90~120 | 160~210 | 97 | [5,54] |
AS21 | 130 | 240 | 68 | [5,26] |
AZ91D | 150 | 230 | 51.2 | [6,26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.-L.; Liu, J.; Luo, D.-M. Microstructure, Mechanical and Thermal Properties of Mg-0.5Ca-xZr Alloys. Crystals 2022, 12, 209. https://doi.org/10.3390/cryst12020209
Zhou Y-L, Liu J, Luo D-M. Microstructure, Mechanical and Thermal Properties of Mg-0.5Ca-xZr Alloys. Crystals. 2022; 12(2):209. https://doi.org/10.3390/cryst12020209
Chicago/Turabian StyleZhou, Ying-Long, Jie Liu, and Dong-Mei Luo. 2022. "Microstructure, Mechanical and Thermal Properties of Mg-0.5Ca-xZr Alloys" Crystals 12, no. 2: 209. https://doi.org/10.3390/cryst12020209
APA StyleZhou, Y. -L., Liu, J., & Luo, D. -M. (2022). Microstructure, Mechanical and Thermal Properties of Mg-0.5Ca-xZr Alloys. Crystals, 12(2), 209. https://doi.org/10.3390/cryst12020209