Layer-by-Layer Assembly of Polyelectrolytes on Urchin-like MnO2 for Extraction of Zn2+, Cu2+ and Pb2+ from Alkaline Solutions
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Reagents and Materials
2.2. Characterization and Instruments
2.3. Preparation of Urchin-like MnO2
2.4. Layer-by-Layer Assembly of Polyelectrolytes on MnO2
2.5. Adsorption Experimental Procedure
2.6. Modeling of Adsorption Kinetics
2.7. Modeling of Adsorption Isotherm
3. Results and Discussion
3.1. Characterization of MnO2, MnO2/PSS/PDDA/PSS and MnO2/(PSS/PDDA)3/PSS
3.2. Adsorption of Zn2+ on MnO2, MnO2/PSS/PDDA/PSS, and MnO2/(PSS/PDDA)3/PSS
3.3. Effect of Solution pH
3.4. Effect of Initial Concentration
3.5. Effect of Adsorbent Dosage
3.6. Adsorption Kinetics
3.7. Adsorption Isotherm Models
3.8. Adsorption of Other Heavy Metals in Alkaline Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Q.; Zhang, Y.; Zhou, W.; Huang, X.; Chen, Y.; Tian, X.; Yu, T. Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal. Chin. Chem. Lett. 2021, 32, 2797–2802. [Google Scholar] [CrossRef]
- Pang, J.J.; Du, R.H.; Lian, X.; Yao, Z.Q.; Xu, J.; Bu, X.H. Selective sensing of CrVI and FeIII ions in aqueous solution by an exceptionally stable TbIII-organic framework with an AIE-active ligand. Chin. Chem. Lett. 2021, 32, 2443–2447. [Google Scholar]
- Li, K.T.; Wu, G.H.; Wang, M.; Zhou, X.H.; Wang, Z.Q. Efficient Removal of Lead Ions from Water by a Low-Cost Alginate-Melamine Hybrid Sorbent. Appl. Sci. 2018, 8, 1518. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Wu, A.G.; Ciacchi, L.C.; Wei, G. Recent Advances in Nanoporous Membranes for Water Purification. Nanomaterials 2018, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.D.; Wang, X.X.; Khan, A.; Wang, P.Y.; Liu, Y.H.; Alsaedi, A.; Hayat, T.; Wang, X.K. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Hu, R.; Fang, Z.Q.; Shi, G.; Zhang, S.; Zhang, M. A multifunctional upconversion nanoparticles probe for Cu2+ sensing and pattern recognition of biothiols. Chin. Chem. Lett. 2021; in press. [Google Scholar] [CrossRef]
- Yan, X.; Ma, J.; Yu, K.; Li, J.; Yang, L.; Liu, J.; Wang, J.; Cai, L. Highly green fluorescent Nb2C MXene quantum dots for Cu2+ ion sensing and cell imaging. Chin. Chem. Lett. 2020, 31, 3173–3177. [Google Scholar] [CrossRef]
- Chiririwa, H.; Naidoo, E.B. Removal Efficiency of Cu2+, Zn2+, Fe2+, Al3+ and Mn2+ from Aqueous Solution in Presence of Bentonite Using Column Adsorption. Asian J. Chem. 2017, 29, 2536–2540. [Google Scholar]
- Hossain, M.D.F.; Akther, N.; Zhou, Y. Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges. Chin. Chem. Lett. 2021, 31, 2525–2538. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, L.; Jia, Q. Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. Chin. Chem. Lett. 2022, 33, 11–21. [Google Scholar] [CrossRef]
- Fernandez, Y.; Maranon, E.; Castrillon, L.; Vazquez, I. Removal of Cd and Zn from inorganic industrial waste leachate by ion exchange. J. Hazard. Mater. 2005, 126, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Alyuz, B.; Veli, S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 2009, 167, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Charerntanyarak, L. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 1999, 39, 135–138. [Google Scholar] [CrossRef]
- Mansoorian, H.J.; Mahvi, A.H.; Jafari, A.J. Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep. Purif. Technol. 2014, 135, 165–175. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Ding, N.; Hu, X.; Shen, C.; Li, F.; Huang, M.; Wang, Z.; Sand, W.; Wang, C.C. Recent advances on electroactive CNT based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. Chin. Chem. Lett. 2020, 31, 2539–2548. [Google Scholar] [CrossRef]
- Oh, H.; Song, J.; Jang, J. Fabrication of polyrhodanine nanotubes modified anodic aluminum oxide membrane and its application for heavy metal ions removal. Abstr. Pap. Am. Chem. Soc. 2011, 242, 1. [Google Scholar]
- Fu, F.L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar]
- Liu, Y.; Sun, X.M.; Li, B.H. Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydr. Polym. 2010, 81, 335–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.F.; Yang, L.Q.; Ma, X.J.; Wang, L.Y.; Ye, Z.F. Characterization and adsorption mechanism of Zn2+ removal by PVA/EDTA resin in polluted water. J. Hazard. Mater. 2010, 178, 1046–1054. [Google Scholar] [CrossRef]
- Iljina, A.; Eisinas, A.; Baltakys, K.; Bankauskaitė, A.; Šiaučiūnas, R. Adsorption capacity of clinoptilolite for Zn2+ ions in acidic solution. Chem. Technol. 2013, 63, 10–14. [Google Scholar] [CrossRef]
- Iljina, A.; Eisinas, A.; Baltakys, K.; Bankauskaitė, A. Adsorption capacity of clinoptilolite for Zn2+ ions in alkaline solution. Chem. Technol. 2013, 63, 15–20. [Google Scholar] [CrossRef]
- Iljina, A.; Baltakys, K.; Eisinas, A. Gyrolite adsorption of Zn2+ ions in acidic and alkaline solutions. Mater. Sci.-Medzg. 2015, 21, 123–128. [Google Scholar]
- Zhang, Y.; Jing, L.; He, X.; Li, Y.; Ma, X. Sorption enhancement of TBBPA from water by fly ash-supported nanostructured γ-MnO2. J. Ind. Eng. Chem. 2015, 21, 610–619. [Google Scholar] [CrossRef]
- Tripathy, S.S.; Kanungo, S.B. Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of delta-MnO2 and amorphous FeOOH. J. Colloid Interface Sci. 2005, 284, 30–38. [Google Scholar] [CrossRef]
- Ohta, A.; Kawabe, I. REE(III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 2001, 65, 695–703. [Google Scholar] [CrossRef]
- Montjoy, D.G.; Bahng, J.H.; Eskafi, A.; Hou, H.; Kotov, N.A. Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing. J. Am. Chem. Soc. 2018, 140, 7835–7845. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Mu, J. Hydrothermal synthesis of gamma-MnOOH nanowires and alpha-MnO2 sea urchin-like clusters. Solid State Commun. 2007, 141, 427–430. [Google Scholar] [CrossRef]
- Zeng, J.H.; Wang, Y.F.; Yang, Y.; Zhang, J. Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J. Mater. Chem. 2010, 20, 10915–10918. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Xiao, M.; Han, D.; Hickner, M.A.; Meng, Y. Layer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery. RSC Adv. 2013, 3, 15467–15474. [Google Scholar] [CrossRef]
- Ge, A.; Matsusaki, M.; Qiao, L.; Akashi, M.; Ye, S. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy. Langmuir 2016, 32, 3803–3810. [Google Scholar] [CrossRef]
- Nassar, N.N. Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qi, Y.; Li, Y.; Zhang, Y.; He, X.; Wang, Y. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems. Bioresour. Technol. 2013, 142, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Repo, E.; Warchol, J.K.; Kurniawan, T.A.; Sillanpaa, M.E.T. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chem. Eng. J. 2010, 161, 73–82. [Google Scholar] [CrossRef]
- Jing, L.; Li, X. Facile synthesis of PVA/CNTs for enhanced adsorption of Pb2+ and Cu2+ in single and binary system. Desalin. Water Treat. 2016, 57, 21391–21404. [Google Scholar] [CrossRef]
- Li, H.; Jia, L.-P.; Ma, R.-N.; Jia, W.-L.; Wang, H.-S. Electrodeposition of PtNPs on the LBL assembled multilayer films of (PDDA-GS/PEDOT:PSS)n and their electrocatalytic activity toward methanol oxidation. RSC Adv. 2017, 7, 16371–16378. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zou, L.; Song, H. Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionization. Desalination 2012, 286, 108–114. [Google Scholar] [CrossRef]
- Liu, R.; Duay, J.; Lee, S.B. Redox Exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 2010, 4, 4299–4307. [Google Scholar] [CrossRef]
- Dicastro, V.; Furlani, C.; Gargano, M.; Rossi, M. XPS Characterization of the CuO/MnO2 catalyst. Appl. Surf. Sci. 1987, 28, 270–278. [Google Scholar] [CrossRef]
- Kilpimaa, S.; Runtti, H.; Kangas, T.; Lassi, U.; Kuokkanen, T. Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution. J. Ind. Eng. Chem. 2015, 21, 1354–1364. [Google Scholar]
- Mohan, D.; Singh, K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste. Water Res. 2002, 36, 2304–2318. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Y.; Li, Y.; Wu, J.; Ma, X.; Yu, C.; Ji, L. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J. Hazard. Mater. 2013, 260, 9–15. [Google Scholar] [CrossRef] [PubMed]
Initial | qexp | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
conc. mg/L | mg/g | k1 × 10−2 min−1 | qe mg/g | R2 | K2 × 10−3 g/(g·min) | qe mg/g | R2 |
100 | 177.74 ± 0.21 | 0.173 ± 0.02 | 177.56 ± 0.44 | 0.9321 | 7.26 ± 0.01 | 94.97 ± 0.37 | 0.9989 |
Temperature | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
K | qmax (mg/g) | b (L/mg) | R2 | Kf (L/mg) | 1/n | R2 |
298 | 246.91 ± 0.22 | 0.296 ± 0.025 | 0.9990 | 3.4261 ± 0.097 | 0.8339 ± 0.082 | 0.9469 |
Metal Ions | Adsorption Capacity (mg/g) | |
---|---|---|
Tap Water | Yellow River Water | |
Zn2+ | 178.32 ± 0.89 | 171.66 ± 1.28 |
Pb2+ | 174.85 ± 0.61 | 169.15 ± 1.72 |
Cu2+ | 146.17 ± 0.50 | 138.22 ± 2.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Nan, Z. Layer-by-Layer Assembly of Polyelectrolytes on Urchin-like MnO2 for Extraction of Zn2+, Cu2+ and Pb2+ from Alkaline Solutions. Crystals 2022, 12, 358. https://doi.org/10.3390/cryst12030358
Chen D, Nan Z. Layer-by-Layer Assembly of Polyelectrolytes on Urchin-like MnO2 for Extraction of Zn2+, Cu2+ and Pb2+ from Alkaline Solutions. Crystals. 2022; 12(3):358. https://doi.org/10.3390/cryst12030358
Chicago/Turabian StyleChen, Dong, and Zhongren Nan. 2022. "Layer-by-Layer Assembly of Polyelectrolytes on Urchin-like MnO2 for Extraction of Zn2+, Cu2+ and Pb2+ from Alkaline Solutions" Crystals 12, no. 3: 358. https://doi.org/10.3390/cryst12030358
APA StyleChen, D., & Nan, Z. (2022). Layer-by-Layer Assembly of Polyelectrolytes on Urchin-like MnO2 for Extraction of Zn2+, Cu2+ and Pb2+ from Alkaline Solutions. Crystals, 12(3), 358. https://doi.org/10.3390/cryst12030358