Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = LBL assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4715 KB  
Article
Acid Yellow 9 Azo Dye Gets the Blues: An Optical Spectroscopy and DFT Study of Unusual Photochemistry in Multilayer Films with PAH and Chitosan
by Mikhail Kim, Tristan H. Borchers, Monica Lin and Christopher J. Barrett
Molecules 2025, 30(19), 3850; https://doi.org/10.3390/molecules30193850 - 23 Sep 2025
Viewed by 203
Abstract
Multilayer and free-standing films self-assembled from water-soluble anionic azo dye acid yellow 9 (AY9) and both poly(allylamine hydrochloride) (PAH) and chitosan (CS) cationic polyelectrolytes were fabricated from water solution using a layer-by-layer (LbL) technique and characterized by UV–Vis and Raman spectroscopy. Observations were [...] Read more.
Multilayer and free-standing films self-assembled from water-soluble anionic azo dye acid yellow 9 (AY9) and both poly(allylamine hydrochloride) (PAH) and chitosan (CS) cationic polyelectrolytes were fabricated from water solution using a layer-by-layer (LbL) technique and characterized by UV–Vis and Raman spectroscopy. Observations were made of a strong, unexpected, and highly unusual colour change from deep red to a distinct dark blue upon exposure of the multilayer films to an acidic environment. The colour change was attributed to the multilayer films only and was not observed either for the polymer or the dye alone, or their mixture in water solution, nor when cast as free-standing films. The significant shift to blue colour of the absorption peaks was quantified with UV–Vis spectroscopy, and a proposed explanation is presented based on density functional theory (DFT) calculations exploring possible and most likely acid-base equilibria configurations of the azo dye that result from being self-assembled. Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Figure 1

29 pages, 4778 KB  
Article
In Silico Development of a Chimeric Multi-Epitope Vaccine Targeting Helcococcus kunzii: Coupling Subtractive Proteomics and Reverse Vaccinology for Vaccine Target Discovery
by Khaled S. Allemailem
Pharmaceuticals 2025, 18(9), 1258; https://doi.org/10.3390/ph18091258 - 25 Aug 2025
Viewed by 824
Abstract
Background: Helcococcus kunzii, a facultative anaerobe and Gram-positive coccus, has been documented as a cunning pathogen, mainly in immunocompromised individuals, as evidenced by recent clinical and microbiological reports. It has been associated with a variety of polymicrobial infections, comprising diabetic foot [...] Read more.
Background: Helcococcus kunzii, a facultative anaerobe and Gram-positive coccus, has been documented as a cunning pathogen, mainly in immunocompromised individuals, as evidenced by recent clinical and microbiological reports. It has been associated with a variety of polymicrobial infections, comprising diabetic foot ulcers, prosthetic joint infections, osteomyelitis, endocarditis, and bloodstream infections. Despite its emerging clinical relevance, no licensed vaccine or targeted immunotherapy currently exists for H. kunzii, and its rising resistance to conventional antibiotics presents a growing public health concern. Objectives: In this study, we employed an integrated subtractive proteomics and immunoinformatics pipeline to design a multi-epitope subunit vaccine (MEV) candidate against H. kunzii. Initially, pan-proteome analysis identified non-redundant, essential, non-homologous, and virulent proteins suitable for therapeutic targeting. Methods/Results: From these, two highly conserved and surface-accessible proteins, cell division protein FtsZ and peptidoglycan glycosyltransferase FtsW, were selected as promising vaccine targets. Comprehensive epitope prediction identified nine cytotoxic T-lymphocyte (CTL), five helper T-lymphocyte (HTL), and two linear B-cell (LBL) epitopes, which were rationally assembled into a 397-amino-acid-long chimeric construct. The construct was designed using appropriate linkers and adjuvanted with the cholera toxin B (CTB) subunit (NCBI accession: AND74811.1) to enhance immunogenicity. Molecular docking and dynamics simulations revealed persistent and high-affinity ties amongst the MEV and essential immune receptors, indicating a durable ability to elicit an immune reaction. In silico immune dynamic simulations predicted vigorous B- and T-cell-mediated immune responses. Codon optimization and computer-aided cloning into the E. coli K12 host employing the pET-28a(+) vector suggested high translational efficiency and suitability for bacterial expression. Conclusions: Overall, this computationally designed MEV demonstrates favorable immunological and physicochemical properties, and presents a durable candidate for subsequent in vitro and in vivo validation against H. kunzii-associated infections. Full article
Show Figures

Figure 1

8 pages, 1944 KB  
Proceeding Paper
Fabrication of Thin-Film Composite Nanofiltration Membrane Employing Polyelectrolyte and Metal–Organic Framework (MOF) via Spin-Spray-Assisted Layer-by-Layer Assembly
by Farid Fadhillah
Eng. Proc. 2025, 105(1), 3; https://doi.org/10.3390/engproc2025105003 - 11 Aug 2025
Viewed by 439
Abstract
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on [...] Read more.
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on a polysulfone (PSF) support. The resulting membrane was further coated with a metal–organic framework (MOF303). The resulting (PEI/PSS)5-MOF303 showed a rejection rate of 18.94 ± 1.58% and a permeability of 0.91 ± 0.13 L/(h·bar·m2)while also showing enhanced antifouling properties. This work explores the possibility of spin-spray-assisted LbL assembly as a promising method for fabricating membranes. Full article
Show Figures

Figure 1

13 pages, 6483 KB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 430
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 4478 KB  
Article
Design and Characterization of PAA/CHI/Triclosan Multilayer Films with Long-Term Antibacterial Activity
by Balzhan Savdenbekova, Aruzhan Sailau, Ayazhan Seidulayeva, Zhanar Bekissanova, Ardak Jumagaziyeva and Renata Nemkayeva
Polymers 2025, 17(13), 1789; https://doi.org/10.3390/polym17131789 - 27 Jun 2025
Viewed by 458
Abstract
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful [...] Read more.
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful incorporation of TCS was confirmed by Fourier-transform infrared (FTIR) spectroscopy. Surface roughness and topography were analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Additionally, the pH-dependent behavior of PAA/CHI films was studied to assess its effect on TCS loading. According to disk diffusion assays, coatings assembled at pH 5 (PAA5/CHI5/TCS) exhibited the strongest antibacterial activity, with inhibition zones of 60.0 ± 0.0 mm for S. aureus and 33.67 ± 1.5 mm for E. coli. The long-term stability of the coatings was evaluated by measuring the antibacterial activity after 1, 10, 20, 30, and 40 days, with results confirming that antimicrobial properties and structural integrity were preserved over time. Furthermore, TCS release kinetics were assessed under physiological (pH 7.4) and acidic (pH 5.5) conditions, revealing enhanced release at pH 5.5. These findings highlight the potential of this multilayer system for biomedical applications requiring both stability and pH-responsive drug release. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

19 pages, 4975 KB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 1219
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

35 pages, 30622 KB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1586
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

17 pages, 7837 KB  
Article
Advanced Phosphorus–Protein Hybrid Coatings for Fire Safety of Cotton Fabrics, Developed Through the Layer-by-Layer Assembly Technique
by Xuqi Yang, Xiaolu Li, Wenwen Guo, Abbas Mohammadi, Marjan Enetezar Shabestari, Rui Li, Shuyi Zhang and Ehsan Naderi Kalali
Polymers 2025, 17(7), 945; https://doi.org/10.3390/polym17070945 - 31 Mar 2025
Viewed by 733
Abstract
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. [...] Read more.
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. During combustion, the phosphate groups (−PO₄2−) in phosphorus containing flame retardant layers interact with the amino groups (–NH2) of protein, forming ester bonds, which results in the generation of a crosslinked network between the amino groups and the phosphate groups. This structure greatly enhances the thermal stability of the residual char, hence improving fire resistance. Cone calorimeter and flammability tests show significant improvements in fire safety, including lower peak heat release rates, reduced smoke production, and higher char residue, all contributing to better flame-retardant performance. pHRR, THR, and TSP of the flame-retarded cotton fabric demonstrated 25, 54, and 72% reduction, respectively. These findings suggest that LbL-assembled protein–phosphorus-based coatings provide a promising, sustainable solution for creating efficient flame-retardant materials. Full article
Show Figures

Graphical abstract

17 pages, 7556 KB  
Article
Layer-by-Layer Self-Assembly Marine Antifouling Coating of Phenol Absorbed by Polyvinylpyrrolidone Anchored on Stainless Steel Surfaces
by Zaixiang Zheng, Shutong Wu, Haobo Shu, Qingzhen Han and Pan Cao
J. Mar. Sci. Eng. 2025, 13(3), 568; https://doi.org/10.3390/jmse13030568 - 14 Mar 2025
Viewed by 873
Abstract
Marine biofouling is a major problem that contributes to the failure of man-made marine structures. Conventional marine antifouling coatings that release heavy metal ions for antimicrobial purposes are no longer in line with today’s environmental issues. In this paper, a layer-by-layer (LBL) self-assembled [...] Read more.
Marine biofouling is a major problem that contributes to the failure of man-made marine structures. Conventional marine antifouling coatings that release heavy metal ions for antimicrobial purposes are no longer in line with today’s environmental issues. In this paper, a layer-by-layer (LBL) self-assembled marine antifouling coating based on an addition reaction between polyvinylpyrrolidone (PVP) and phenols to anchor pyrogallic (PG) with an antimicrobial effect on stainless steel surfaces is presented. For this purpose, three phenolics were selected, and their antifouling effects were compared. Field emission scanning electron microscopy, contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy analysis (FTIR) were used to thoroughly characterize the LBLPGs, and the results showed superior homogeneity of the coatings with no significant delamination. Simulated marine antifouling and friction tests showed that the coating inhibited Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Phaeodactylum tricornutum (P. tricornutum) by more than 90% and reduced the friction coefficient of the stainless steel surface from 0.38 to 0.24, demonstrating superior antifouling and friction resistance effects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 109001 KB  
Article
Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures
by Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang and Wei Deng
Molecules 2025, 30(4), 954; https://doi.org/10.3390/molecules30040954 - 18 Feb 2025
Cited by 5 | Viewed by 971
Abstract
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core–shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres [...] Read more.
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core–shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol–gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol–gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol–gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol–gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures. Full article
Show Figures

Figure 1

44 pages, 11801 KB  
Review
Layer-by-Layer Nanoarchitectonics: A Method for Everything in Layered Structures
by Katsuhiko Ariga
Materials 2025, 18(3), 654; https://doi.org/10.3390/ma18030654 - 1 Feb 2025
Cited by 9 | Viewed by 2073
Abstract
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related [...] Read more.
The development of functional materials and the use of nanotechnology are ongoing projects. These fields are closely linked, but there is a need to combine them more actively. Nanoarchitectonics, a concept that comes after nanotechnology, is ready to do this. Among the related research efforts, research into creating functional materials through the formation of thin layers on surfaces, molecular membranes, and multilayer structures of these materials have a lot of implications. Layered structures are especially important as a key part of nanoarchitectonics. The diversity of the components and materials used in layer-by-layer (LbL) assemblies is a notable feature. Examples of LbL assemblies introduced in this review article include quantum dots, nanoparticles, nanocrystals, nanowires, nanotubes, g-C3N4, graphene oxide, MXene, nanosheets, zeolites, nanoporous materials, sol–gel materials, layered double hydroxides, metal–organic frameworks, covalent organic frameworks, conducting polymers, dyes, DNAs, polysaccharides, nanocelluloses, peptides, proteins, lipid bilayers, photosystems, viruses, living cells, and tissues. These examples of LbL assembly show how useful and versatile it is. Finally, this review will consider future challenges in layer-by-layer nanoarchitectonics. Full article
Show Figures

Graphical abstract

16 pages, 5491 KB  
Article
Point-of-Care Detection of Carcinoembryonic Antigen (CEA) Using a Smartphone-Based, Label-Free Electrochemical Immunosensor with Multilayer CuONPs/CNTs/GO on a Disposable Screen-Printed Electrode
by Supada Khonyoung, Praphatsorn Mangkronkaew, Puttaporn Klayprasert, Chanida Puangpila, Muthukumaran Palanisami, Mani Arivazhagan and Jaroon Jakmunee
Biosensors 2024, 14(12), 600; https://doi.org/10.3390/bios14120600 - 7 Dec 2024
Cited by 2 | Viewed by 3656
Abstract
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was [...] Read more.
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface. Detection relies on direct interactions without extra tagging agents, where ordered graphene oxide (GO), carbon nanotubes (CNTs), and copper oxide nanoparticles (CuONPs) were sequentially deposited onto a screen-printed carbon electrode (SPCE), designated as CuONPs/CNTs/GO/SPCE. This significantly amplifies the electrochemical signal, allowing for the detection of low concentrations of target molecules of CEA. The LBL approach enables the precise construction of multi-layered structures on the sensor surface, enhancing their activity and optimizing the electrochemical performance for CEA detection. These nanostructured materials serve as efficient carriers to significantly increase the surface area, conductivity, and structural support for antibody loading, thus improving the sensitivity of detection. The detection of carcinoembryonic antigen (CEA) in this electrochemical immunosensing transducer is based on a decrease in the current response of the [Fe(CN)6]3−/4− redox probes, which occurs in proportion to the amount of the immunocomplex formed on the sensor surface. Under the optimized conditions, the immunosensor exhibited good detection of CEA with a linear range of 0.1–5.0 ng mL−1 and a low detection limit of 0.08 ng mL−1. This label-free detection approach, based on signal suppression due to immunocomplex formation, is highly sensitive and efficient for measuring CEA levels in serum samples, with higher recovery ranges of 101% to 112%, enabling early cancer diagnosis. The immunosensor was successfully applied to determine CEA in serum samples. This immunosensor has several advantages, including simple fabrication, portability, rapid analysis, high selectivity and sensitivity, and good reproducibility with long-term stability over 21 days. Therefore, it has the potential for point-of-care diagnosis of lung cancer. Full article
(This article belongs to the Special Issue Immunosensors: Design and Applications)
Show Figures

Figure 1

20 pages, 3445 KB  
Article
Antibiofilm Effects of Modifying Polyvinylidene Fluoride Membranes with Polyethylenimine, Poly(acrylic acid) and Graphene Oxide
by Mario Castillo-Ruiz, Constanza Negrete, Juan Pablo Espinoza, Iván Martínez, Leslie K. Daille, Christopher González and Bárbara Rodríguez
Polymers 2024, 16(23), 3418; https://doi.org/10.3390/polym16233418 - 5 Dec 2024
Cited by 1 | Viewed by 1471
Abstract
Biofouling in membrane filtration systems poses significant operational challenges, leading to decreased permeate flux. The aim of this work was to study the anti-biofilm properties of new nanofiltration membranes produced via layer-by-layer, LBL, assembly by coating a polyvinylidene fluoride (PVDF) support with a [...] Read more.
Biofouling in membrane filtration systems poses significant operational challenges, leading to decreased permeate flux. The aim of this work was to study the anti-biofilm properties of new nanofiltration membranes produced via layer-by-layer, LBL, assembly by coating a polyvinylidene fluoride (PVDF) support with a polyethylenimine (PEI) and poly(acrylic acid)/graphene oxide (PAA-GO) mixture. The membranes were characterized according to contact angle, scanning electron microscopy (SEM), atomic force microscopy and their Z-potential. Biofilm quantification and characterization were carried out using crystal violet staining and SEM, while bacterial viability was assessed by using colony-forming units. The membrane with three bilayers ((PAA-PEI)3/PVDF) showed a roughness of 77.78 nm. The incorporation of GO ((GO/PAA-PEI)3/PVDF) produced a membrane with a smoother surface (roughness of 26.92 nm) and showed salt rejections of 16% and 68% for NaCl and Na2SO4, respectively. A significant reduction, ranging from 82.37 to 77.30%, in biofilm formation produced by S. aureus and E. coli were observed on modified membranes. Additionally, the bacterial viability on the modified membranes was markedly reduced (67.42–99.98%). Our results show that the modified membranes exhibited both antibiofilm and antimicrobial capacities, suggesting that these properties mainly depend on the properties of the modifying agents, as the initial adherence on the membrane surface was not totally suppressed, but the proliferation and formation of EPSs were prevented. Full article
(This article belongs to the Special Issue Advanced Polymer Materials for Water and Wastewater Treatment)
Show Figures

Figure 1

13 pages, 3932 KB  
Article
Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles
by Tomasz Urbaniak, Yauheni Milasheuski and Witold Musiał
Int. J. Mol. Sci. 2024, 25(23), 12921; https://doi.org/10.3390/ijms252312921 - 1 Dec 2024
Cited by 2 | Viewed by 1242
Abstract
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was [...] Read more.
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism. The LV-PCL particles were subsequently coated using the layer-by-layer (LbL) technique, with polyelectrolyte multilayers assembled to potentially modify the carrier’s properties. The LbL assembly process was comprehensively analyzed, including assessments of shell thickness, changes in ζ-potential, and thermodynamic properties, to provide insights into the multilayer structure and interactions. The sustained LV release over 7 weeks was observed, following zero-order kinetics (R2 > 0.99), indicating a controlled and predictable release mechanism. Carriers coated with polyethylene imine/heparin and chitosan/heparin tetralayers exhibited a distinct increase in the release rate after 6 weeks and 10 weeks, respectively, suggesting that this coating can facilitate the autocatalytic degradation of the polyester microparticles. These findings indicate the potential of this system for long-term, localized drug delivery applications, requiring sustained release with minimal burst effects. Full article
Show Figures

Figure 1

9 pages, 2040 KB  
Article
Preparation of Antistatic Polyester Fiber via Layer-by-Layer Self-Assembly
by Wei Wang, Jialong Zhang, Yifan Liu, Mengyun Weng and Yanchun Fu
Coatings 2024, 14(10), 1236; https://doi.org/10.3390/coatings14101236 - 25 Sep 2024
Cited by 2 | Viewed by 1608
Abstract
Polyester fibers tend to generate static electricity during the weaving and application processes, posing a threat to their production. Enhancing the water absorbency and electrical conductivity of polyester fibers themselves is an effective approach to improving their antistatic properties. In this study, multifunctional [...] Read more.
Polyester fibers tend to generate static electricity during the weaving and application processes, posing a threat to their production. Enhancing the water absorbency and electrical conductivity of polyester fibers themselves is an effective approach to improving their antistatic properties. In this study, multifunctional chitosan (CS), sodium phytate (SP), and Cu2+ were loaded on polyester fibers through layer-by-layer (LBL) self-assembly. The antistatic and water absorption capability of the modified polyester fibers was investigated by designing different process parameters combined with a surface resistance test and water contact angle tests. The antistatic property test results confirmed the positive effect of CS and Cu2+ on discharging electrostatic charge. Within a definite scope, with the increase in the number of assembly layers, assembly duration, and the concentration of the assembly substances, the wettability of the modified polyester fibers became more favorable and the antistatic effect became more remarkable. Full article
Show Figures

Figure 1

Back to TopTop