Second-Order Raman Scattering in Ferroelectric Ceramic Solid Solutions LiNbxTa1−xO3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, D.; Betzler, K.; Hesse, H. Dielectric properties of lithium niobate-tantalate crystals. Solid State Commun. 2000, 115, 581–585. [Google Scholar] [CrossRef]
- Wood, I.G.; Daniels, P.; Brown, R.H.; Glazer, A.M. Optical birefringence study of the ferroelectric phase transition in lithium niobate tantalate mixed crystals: LiNb1-xTaxO3. J. Phys. Condens. Matter 2008, 20, 235237. [Google Scholar] [CrossRef]
- Roshchupkin, D.; Emelin, E.; Plotitcyna, O.; Rashid, F.; Irzhak, D.; Karandashev, V.; Orlova, T.; Targonskaya, N.; Sakharov, S.; Mololkin, A.; et al. Single crystals of ferroelectric lithium niobate–tantalate LiNb1–xTaxO3 solid solutions for high-temperature sensor and actuator applications. Acta Crystallogr. B 2020, 76, 1071–1076. [Google Scholar] [CrossRef]
- Irzhak, A.; Irzhak, D.; Khvostikov, V.; Pundikov, K.; Roshchupkin, D.; Fahrtdinov, R. Effect of local changes in the composition of the LiNb1-xTaxO3 single crystal on the Raman spectra. J. Raman Spectrosc. 2022, in press. [CrossRef]
- Vasylechko, L.; Sydorchuk, V.; Lakhnik, A.; Suhak, Y.; Wlodarczyk, D.; Hurskyy, S.; Yakhnevych, U.; Zhydachevskyy, Y.; Sugak, D.; Syvorotka, I.; et al. Investigations of LiNb1−xTaxO3 nanopowders obtained with mechanochemical method. Crystals 2021, 11, 755. [Google Scholar] [CrossRef]
- Buryy, O.; Vasylechko, L.; Sydorchuk, V.; Lakhnik, A.; Suhak, Y.; Wlodarczyk, D.; Hurskyj, S.; Yakhnevych, U.; Zhydachevskyy, Y.; Sugak, D.; et al. Crystal structure, Raman spectra and electrical conductivity of LiNb1–xTaxO3 nanopowders obtained with high-energy ball milling. J. Nano-Electron. Phys. 2021, 13, 02038. [Google Scholar] [CrossRef]
- Bartasyte, A.; Margueron, S.; Glazer, A.M.; Simon, E.; Gregora, I.; Huband, S.; Thomas, P.A. Vibrational modes and overlap matrix of LiNb1−xTaxO3 mixed crystals. Phys. Rev. B 2019, 99, 094306. [Google Scholar] [CrossRef]
- Rüsing, M.; Sanna, S.; Neufeld, S.; Berth, G.; Schmidt, W.G.; Zrenner, A.; Yu, H.; Wang, Y.; Zhang, H. Vibrational properties of LiNb1-xTaxO3 mixed crystals. Phys. Rev. B 2016, 93, 184305. [Google Scholar] [CrossRef]
- Bartasyte, A.; Glazer, A.; Wondre, F.; Prabhakaran, D.; Thomas, P.; Huband, S.; Keeble, D.; Margueron, S. Growth of LiNb1−xTaxO3 solid solution crystals. Mater. Chem. Phys. 2012, 134, 728–735. [Google Scholar] [CrossRef]
- Sidorov, N.; Palatnikov, M.; Serebryakov, Y.; Rogovoi, V.; Melnik, N. Structural ordering and ferroelectric properties of LiTaxNb1-xO3 solid solutions. Ferroelectrics 1996, 188, 31–40. [Google Scholar] [CrossRef]
- Serebryakov, Y.; Sidorov, N.; Palatnikov, M.; Lebold, V.; Savchenko, Y.; Kalinnikov, V. The influence of Mg2+, Gd3+ and Ta5+ admixtures on cation structural ordering in lithium niobate single crystals. Ferroelecrrics 1995, 167, 181–189. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Serebryakov, Y.A.; Palatnikov, M.N.; Mel’nik, N.N. Characteristic features of the structural ordering and ferroelectric properties of the solid solutions LiTaxNb1-xO3. Phys. Solid State 1995, 37, 1910–1915. [Google Scholar]
- Ge, Y.-C.; Zhao, C.-Z. Raman study of the phase transition in LiTa0.9Nb0.1O3 single crystal. J. Raman Spectrosc. 1995, 26, 975–979. [Google Scholar] [CrossRef]
- Ge, Y.-C.; Zhao, C.-Z. Raman spectra study on LiTa0.9Nb0.1O3 single crystal. Spectrosc. Lett. 1995, 28, 451–458. [Google Scholar] [CrossRef]
- Sanna, S.; Riefer, A.; Neufeld, S.; Schmidt, W.G.; Berth, G.; Rüsing, M.; Widhalm, A.; Zrenner, A. Vibrational fingerprints of LiNbO3-LiTaO3 mixed crystals. Ferroelectrics 2013, 447, 63–68. [Google Scholar] [CrossRef]
- Jaschin, P.W.; Varma, K.B.R. Enhanced second harmonic generation and photoluminescence in Pr-doped LiNb0.5Ta0.5O3 nanocrystals embedded in a borate based glass. J. Appl. Phys. 2017, 122, 083107. [Google Scholar] [CrossRef]
- Jaschin, P.W.; Varma, K.B.R. Structural evolution and second harmonic properties of lithium niobate–tantalate nanocrystals embedded in a borate glass. J. Non-Cryst. Solids 2016, 434, 41–52. [Google Scholar] [CrossRef]
- Gorelik, V.S.; Pyatyshev, A.Y. Raman scattering in diamond nano- and microcrystals, synthesized at high temperatures and high pressures. Diam. Relat. Mater. 2020, 110, 108104. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Palatnikov, M.N.; Gorelik, V.S.; Sverbil, P.P. Second-order Raman spectra of a LiNbO3:Tb crystal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 266, 120445. [Google Scholar] [CrossRef]
- Anik’ev, A.A.; Umarov, B.S.; Scott, J.F. Analysis of two-phonon resonances in and Raman spectroscopy of ammonium chloride. J. Raman Spectrosc. 1985, 16, 315–318. [Google Scholar] [CrossRef]
- Anik’ev, A.A.; Gorelik, V.S.; Umarov, B.S. Effects of resonance interaction between a soft mode and two-phonon excitations in Raman spectra of quartz. Sov. Phys. Solid State 1984, 26, 1679–1682. [Google Scholar]
- Sushchinsky, M.M.; Gorelik, V.S.; Maximov, O.P. Higher-order Raman spectra of GaP. J. Raman Spectrosc. 1978, 7, 26–30. [Google Scholar] [CrossRef]
- Gorelik, V.; Maximov, O.; Mitin, G.; Sushchinsky, M.; Lebedev, P. Bound and many-particle states in polariton Raman spectra of NH4Cl crystals. Solid State Commun. 1977, 21, 615–619. [Google Scholar] [CrossRef]
- Nogueira, B.A.; Milani, A.; Castiglioni, C.; Fausto, R. The correlation between experimental polarized Raman spectra and their density functional theory prediction in the LCAO framework: The R3c LiNbO3 crystal as a test case. J. Raman Spectrosc. 2021, 52, 995–1010. [Google Scholar] [CrossRef]
- Margueron, S.; Bartasyte, A.; Glazer, A.M.; Simon, E.; Hlinka, J.; Gregora, I.; Gleize, J. Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3. J. Appl. Phys. 2012, 111, 104105. [Google Scholar] [CrossRef]
- Sidorov, N.; Palatnikov, M.; Kadetova, A. Raman scattering in non-stoichiometric lithium niobate crystals with a low photorefractive effect. Crystals 2019, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.S., Jr.; Loudon, R. Dielectric properties and optical phonons in LiNbO3. Phys. Rev. 1967, 158, 433–445. [Google Scholar] [CrossRef]
- Ridah, A.; Bourson, P.; Fontana, M.D.; Malovichko, G. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3. J. Phys. Condens. Matter 1997, 9, 9687–9693. [Google Scholar] [CrossRef]
- Sidorov, N.; Yanichev, A.; Palatnikov, M.; Manukovskaya, D. Comparative investigation of LiNbO3 crystals Raman spectra in the temperature range 100–400 K. Vib. Spectrosc. 2018, 96, 19–25. [Google Scholar] [CrossRef]
- Caciuc, V.; Postnikov, A.V.; Borstel, G. Ab initio structure and zone-center phonons in LiNbO3. Phys. Rev. B 2000, 61, 8806–8813. [Google Scholar] [CrossRef]
- Repelin, Y.; Husson, E.; Bennani, F.; Proust, C. Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations. J. Phys. Chem. Solids 1999, 60, 819–825. [Google Scholar] [CrossRef]
- Svaasand, L.O.; Eriksrud, M.; Nakken, G.; Grande, A.P. Solid-solution range of LiNbO3. J. Cryst. Growth 1974, 22, 230–232. [Google Scholar] [CrossRef]
- Ruvalds, J.; Zawadowski, A. Two-phonon resonances and hybridization of the resonance with single-phonon states. Phys. Rev. B 1970, 2, 1172–1175. [Google Scholar] [CrossRef]
- Ruvalds, J.; Zawadowski, A. Indirect coupling and antiresonance of two optic phonons. Phys. Rev. Lett. 1970, 24, 1111–1114. [Google Scholar] [CrossRef]
- Ruvalds, J.; Zawadowski, A. Resonances of two phonons from different dispersion branches. Solid State Commun. 1971, 9, 129–132. [Google Scholar] [CrossRef]
Sample | a, Å | c, Å |
---|---|---|
LiNb0.4Ta0.6O3 | 5.21 | 13.98 |
LiNb0.5Ta0.5O3 | 5.15 | 13.8 |
LiNb0.6Ta0.4O3 | 5.22 | 14.04 |
ν, cm−1 | Assignment | ||
---|---|---|---|
LiNb0.4Ta0.6O3 | LiNb0.5Ta0.5O3 | LiNb0.6Ta0.4O3 | |
142 | 146 (148) | 144 (146) | 1E(x,y) |
175 (177) | 169 (171) | 169 (175) | 2E(x,y) [28,29,30,31] |
219 | 226 | 222 | 1A1(z) |
292 (294) | 294 (296) | 292 (294) | 3E(x,y) |
317 | 318 | 318 | 4E(x,y) |
348 | 343 | 344 | 2A1(z); 3A1(z) |
378 | 374 | 375 (376) | 6E(x,y) |
453 (455) | 445 (447) | 447 | 7E(x,y) |
603 | 610 (612) | 608 | 4A1(z) |
662 | 662 | 657 (662) | 8E(x,y); 9E(x,y) |
811 (815) | 815 (820) | 818 (820) | Li3NbO4 phase [32] |
865 (866) | 868 | 868 | 4A1(z) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorov, N.; Palatnikov, M.; Pyatyshev, A.; Sverbil, P. Second-Order Raman Scattering in Ferroelectric Ceramic Solid Solutions LiNbxTa1−xO3. Crystals 2022, 12, 456. https://doi.org/10.3390/cryst12040456
Sidorov N, Palatnikov M, Pyatyshev A, Sverbil P. Second-Order Raman Scattering in Ferroelectric Ceramic Solid Solutions LiNbxTa1−xO3. Crystals. 2022; 12(4):456. https://doi.org/10.3390/cryst12040456
Chicago/Turabian StyleSidorov, Nikolay, Mikhail Palatnikov, Alexander Pyatyshev, and Pavel Sverbil. 2022. "Second-Order Raman Scattering in Ferroelectric Ceramic Solid Solutions LiNbxTa1−xO3" Crystals 12, no. 4: 456. https://doi.org/10.3390/cryst12040456
APA StyleSidorov, N., Palatnikov, M., Pyatyshev, A., & Sverbil, P. (2022). Second-Order Raman Scattering in Ferroelectric Ceramic Solid Solutions LiNbxTa1−xO3. Crystals, 12(4), 456. https://doi.org/10.3390/cryst12040456