Mechanical Performance and Deformation Behavior of CoCrNi Medium-Entropy Alloy at the Atomic Scale
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
3.1. Single Crystalline MEA
3.1.1. Effect of Temperature
3.1.2. Effect of Strain Rate
3.2. Polycrystalline MEA
3.3. Nanotwinned MEA
3.3.1. Effect of Strain Rate
3.3.2. Effect of Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, F.-H.; Wang, Y.-J.; Dai, L.-H. Novel atomic-scale mechanism of incipientplasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment. Acta Mater. 2020, 194, 283–294. [Google Scholar] [CrossRef]
- Jian, W.-R.; Xie, Z.; Xu, S.; Su, Y.; Yao, X.; Beyerlein, I.J. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi. Acta Mater. 2020, 199, 352–369. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.S.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef] [PubMed]
- Laplanche, G.; Kostka, A.; Reinhart, C.; Hunfeld, J.; Eggeler, G.; George, E.P. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 2017, 128, 292–303. [Google Scholar] [CrossRef]
- Liu, S.F.; Wu, Y.; Wang, H.T.; He, J.Y.; Liu, J.B.; Chen, C.X.; Liu, X.J.; Wang, H.; Lu, Z.P. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics 2018, 93, 269–273. [Google Scholar] [CrossRef]
- Woo, W.; Naeem, M.; Jeong, J.-S.; Lee, C.-M.; Harjo, S.; Kawasaki, T.; He, H.; Wang, X.-L. Comparison of dislocation density, twin fault probability, and stacking fault energy between CrCoNi and CrCoNiFe medium entropy alloys deformed at 293 and 140K. Mater. Sci. Eng. A 2020, 781, 139224. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Zhao, X.S.; Tu, W.D.; Yan, Y.D.; Yu, F.L. Plastic deformation mechanisms in face-centered cubic materials with low stacking fault energy. Mater. Sci. Eng. A 2016, 676, 241–245. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Fang, Q.; Li, J.; Liu, F.; Liu, Y.; Liaw, P.K. Effects of temperature and strain rate on plastic deformation mechanisms of nanocrystalline high-entropy alloys. Intermetallics 2020, 120, 106741. [Google Scholar] [CrossRef]
- Utt, D.; Stukowski, A.; Able, K. Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 2020, 186, 11–19. [Google Scholar] [CrossRef]
- Li, J.; Fang, Q.; Liu, B.; Liu, Y.; Liu, Y. Mechanical behaviors of AlCrFeCuNihigh-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 2016, 6, 76409–76419. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Fang, Q.; Liu, B.; Zhang, L. Investigation into nanoscratchingmechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl. Surf. Sci. 2017, 416, 470–481. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.-J.; Sheng, H.; Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, H.; Xing, B.; Zhang, S.; Li, L.; Qin, Q.H. Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: From nanoscale to macroscale. Mater. Des. 2018, 160, 313–324. [Google Scholar] [CrossRef]
- Yan, S.; Xing, B.; Qin, Q.-H. Effect of Interface on the Deformation of Aluminium Bicrystal: Atomistic Simulation Study. MATEC Web Conf. 2016, 82, 02010. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Yang, X.; Ming, K.; Xiang, S.; Liu, Q. In situ observation of transmission and reflection of dislocations at twin boundary in CoCrNi alloys. Sci. China Technol. Sci. 2021, 64, 407–413. [Google Scholar] [CrossRef]
- Deng, H.W.; Xie, Z.M.; Zhao, B.L.; Wang, Y.K.; Wang, M.M.; Yang, J.F.; Zhang, T.; Xiong, Y.; Wang, X.P.; Fang, Q.F.; et al. Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins. Mater. Sci. Eng. 2019, 744, 241–246. [Google Scholar] [CrossRef]
Temperatures | Tensile Strength (GPa) | Compressive Strength (GPa) | |
---|---|---|---|
<001> | <110> | <001> | |
77 K | 13.75 | 8.07 | 4.93 |
300 K | 11.36 | 7.01 | 4.40 |
500 K | 9.30 | 5.95 | 3.81 |
800 K | 6.60 | 4.52 | 2.91 |
Strain Rates | Tensile Strength (GPa) | Compressive Strength (GPa) | |
---|---|---|---|
<001> | <110> | <001> | |
1 × 108 s−1 | 10.96 | 6.76 | 4.27 |
1 × 109 s−1 | 11.32 | 7.01 | 4.34 |
1 × 1010 s−1 | 12.59 | 7.30 | 4.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Tian, N.; Tong, Y.; Hu, Y.; Deng, D.; Zhang, M.; Cai, Z.; Liu, J. Mechanical Performance and Deformation Behavior of CoCrNi Medium-Entropy Alloy at the Atomic Scale. Crystals 2022, 12, 753. https://doi.org/10.3390/cryst12060753
Liu Z, Tian N, Tong Y, Hu Y, Deng D, Zhang M, Cai Z, Liu J. Mechanical Performance and Deformation Behavior of CoCrNi Medium-Entropy Alloy at the Atomic Scale. Crystals. 2022; 12(6):753. https://doi.org/10.3390/cryst12060753
Chicago/Turabian StyleLiu, ZF, N Tian, YG Tong, YL Hu, DY Deng, MJ Zhang, ZH Cai, and J Liu. 2022. "Mechanical Performance and Deformation Behavior of CoCrNi Medium-Entropy Alloy at the Atomic Scale" Crystals 12, no. 6: 753. https://doi.org/10.3390/cryst12060753
APA StyleLiu, Z., Tian, N., Tong, Y., Hu, Y., Deng, D., Zhang, M., Cai, Z., & Liu, J. (2022). Mechanical Performance and Deformation Behavior of CoCrNi Medium-Entropy Alloy at the Atomic Scale. Crystals, 12(6), 753. https://doi.org/10.3390/cryst12060753