Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method
Abstract
:1. Introduction
2. Crystallization Process of Perovskite Using Two-Step Method
2.1. Immersion Method
2.2. Spin-Coating Method
2.3. Evaporation Technology
3. Strategies for Manipulating Crystallization Kinetics
3.1. Additive Engineering
Strategies | Perovskite Component | Jsc (mA/cm2) | VOC (V) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|
Additive engineering | Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3 | 23.01 | 1.110 | 78.97 | 20.17 | [46] |
Additive engineering | (FAPbI3)1−x(MAPbBr3)x | 24.40 | 1.180 | 79.00 | 22.70 | [51] |
Additive engineering | MAPbI3 | 22.64 | 1.130 | 81.00 | 20.61 | [52] |
Additive engineering | 1D/3D perovskite | 24.64 | 1.140 | 78.57 | 22.07 | [48] |
Additive engineering | MAPbI3 | 23.54 | 1.030 | 71.00 | 17.21 | [53] |
Additive engineering | MAPbI3 | 18.60 | 0.894 | 62.00 | 10.20 | [54] |
Additive engineering | MAPbI3 | 21.58 | 1.040 | 70.00 | 15.60 | [57] |
Additive engineering | (FA, MA, Cs)Pb(I, Br)3 | 24.05 | 1.145 | 76.31 | 21.01 | [58] |
Additive engineering | MAPbI3 | 22.57 | 1.150 | 80.58 | 20.92 | [59] |
Composition engineering | FAxPEA1–xPbI3 | 22.08 | 1.040 | 77.13 | 17.71 | [55] |
Composition engineering | MAPbI3 | 23.05 | 1.060 | 65.35 | 15.64 | [60] |
Composition engineering | Csx(MA0.4FA0.6)1−xPbI3 | 23.30 | 1.081 | 80.80 | 20.30 | [61] |
Composition engineering | CH3NH3PbI3−x(SCN)x | 21.10 | 0.956 | 75.00 | 15.12 | [62] |
Composition engineering | FAPbI3 | 25.00 | 1.110 | 81.70 | 22.60 | [63] |
Composition engineering | (GA1/16Cs1/16FA14/16)Pb(I15/16Br1/16)3 | 24.80 | 1.160 | 81.30 | 23.50 | [17] |
Solvent engineering | MAPbI3 | 20.71 | 1.020 | 64.00 | 13.50 | [64] |
Solvent engineering | MAPbI3 | 21.39 | 1.060 | 76.00 | 17.16 | [56] |
Solvent engineering | MAPbI3 | 22.55 | 1.010 | 71.00 | 16.17 | [65] |
Solvent engineering | FASnI3 | 17.37 | 0.530 | 73.47 | 6.80 | [66] |
Solvent engineering | FASnI3 | 19.96 | 0.770 | 65.70 | 10.09 | [67] |
3.2. Composition Engineering
3.3. Solvent Engineering
4. Outlook and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S. Il High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X.C.; Huang, J. Defect Passivation in Hybrid Perovskite Solar Cells Using Quaternary Ammonium Halide Anions and Cations. Nat. Energy 2017, 2, 17102. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S. Il Solvent Engineering for High-Performance Inorganic–organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Z.; Zhou, B.; Jia, X.; Ma, Q.; Yuan, N.; Zheng, X.; Ding, J.; Zhang, W.H. Green Anti-Solvent Processed Planar Perovskite Solar Cells with Efficiency beyond 19%. Sol. RRL 2018, 2, 1700213. [Google Scholar] [CrossRef]
- Shan, S.; Li, Y.; Wu, H.; Chen, T.; Niu, B.; Zhang, Y.; Wang, D.; Kan, C.; Yu, X.; Zuo, L.; et al. Manipulating the Film Morphology Evolution toward Green Solvent-processed Perovskite Solar Cells. SusMat 2021, 1, 537–544. [Google Scholar] [CrossRef]
- Bi, D.; Moon, S.J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E.M.J.; Nazeeruddin, M.K.; Grätzel, M.; Hagfeldt, A. Using a Two-Step Deposition Technique to Prepare Perovskite (CH 3NH3PbI3) for Thin Film Solar Cells Based on ZrO2 and TiO2 Mesostructures. RSC Adv. 2013, 3, 18762–18766. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, F.; Wang, M.; Wang, M.; Li, L. Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2020, 59, 4161–4167. [Google Scholar] [CrossRef]
- Lee, D.G.; Kim, D.H.; Lee, J.M.; Kim, B.J.; Kim, J.Y.; Shin, S.S.; Jung, H.S. High Efficiency Perovskite Solar Cells Exceeding 22% via a Photo-Assisted Two-Step Sequential Deposition. Adv. Funct. Mater. 2021, 31, 2006718. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, S.; Li, N.; Huang, B.; Niu, X.; Li, L.; Sun, M.; Zhang, Y.; Zhang, X.; Zhu, C.; et al. Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite Photovoltaics. Joule 2020, 4, 1961–1976. [Google Scholar] [CrossRef]
- Ahlawat, P.; Hinderhofer, A.; Alharbi, E.A.; Lu, H.; Ummadisingu, A.; Niu, H.; Invernizzi, M.; Zakeeruddin, S.M.; Dar, M.I.; Schreiber, F.; et al. A Combined Molecular Dynamics and Experimental Study Of two-Step Process Enabling Low-Temperature Formation of Phase-Pure α-FAPbI3. Sci. Adv. 2021, 7, eabe3326. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Im, J.H.; Jang, I.H.; Pellet, N.; Grätzel, M.; Park, N.G. Growth of CH3 NH3 PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nat. Nanotechnol. 2014, 9, 927–932. [Google Scholar] [CrossRef]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef]
- Qin, M.; Xue, H.; Zhang, H.; Hu, H.; Liu, K.; Li, Y.; Qin, Z.; Ma, J.; Zhu, H.; Yan, K.; et al. Precise Control of Perovskite Crystallization Kinetics via Sequential A-Site Doping. Adv. Mater. 2020, 32, 2004630. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, X.; Zhang, B.; Odunmbaku, G.O.; Ou, Z.; Guo, B.; Yang, K.; Kan, Z.; Lu, S.; Chen, S.; et al. Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4%. Adv. Mater. 2022, 34, 2106118. [Google Scholar] [CrossRef]
- Fu, Y.; Meng, F.; Rowley, M.B.; Thompson, B.J.; Shearer, M.J.; Ma, D.; Hamers, R.J.; Wright, J.C.; Jin, S. Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications. J. Am. Chem. Soc. 2015, 137, 5810–5818. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hu, Q.; Wu, J.; Chen, K.; Zhao, L.; Liu, F.; Wang, C.; Lu, H.; Jia, S.; Russell, T.; et al. Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1501890. [Google Scholar] [CrossRef]
- Hsieh, T.Y.; Huang, C.K.; Su, T.-S.; Hong, C.Y.; Wei, T.C. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance. ACS Appl. Mater. Interfaces 2017, 9, 8623–8633. [Google Scholar] [CrossRef] [PubMed]
- Zheng, E.; Wang, X.F.; Song, J.; Yan, L.; Tian, W.; Miyasaka, T. PbI2-Based Dipping-Controlled Material Conversion for Compact Layer Free Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 18156–18162. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Lim, S.L.; Goh, W.P.; Wei, F.X.; Zhang, J. Improvement of CH3NH3PbI3 Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 24726–24732. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Zhao, Y.L.; Che, M.; Zhu, L.; Gu, X.Q.; Qiang, Y.H. Morphology Modification of Perovskite Film by a Simple Post-Treatment Process in Perovskite Solar Cell. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017, 217, 18–25. [Google Scholar] [CrossRef]
- Li, S.; Ren, H.; Yan, Y. Boosting Efficiency of Planar Heterojunction Perovskite Solar Cells to 21.2% by a Facile Two-Step Deposition Strategy. Appl. Surf. Sci. 2019, 484, 1191–1197. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Zhou, W.; Hou, Y.; Zhao, Y.; Fu, R.; Yu, D.; Liu, X.; Zhao, Q. Double-Side-Passivated Perovskite Solar Cells with Ultra-Low Potential Loss. Sol. RRL 2019, 3, 1800296. [Google Scholar] [CrossRef]
- Hui, W.; Chao, L.; Lu, H.; Xia, F.; Wei, Q.; Su, Z.; Niu, T.; Tao, L.; Du, B.; Li, D.; et al. Stabilizing Black-Phase Formamidinium Perovskite Formation at Room Temperature and High Humidity. Science 2021, 371, 1359–1364. [Google Scholar] [CrossRef]
- Yao, Y.; Zou, X.; Cheng, J.; Chen, D.; Chang, C.; Ling, T.; Ren, H. Impact of Delay Time before Annealing MAI-PbI2-DMSO Intermediate Phase on Perovskite Film Quality and Photo-Physical Properties. Crystals 2019, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Im, J.H.; Kim, H.S.; Park, N.G. Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step versus Two-Step Deposition of CH3NH3PbI3. APL Mater. 2014, 2, 81510. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 2014, 7, 2619–2623. [Google Scholar] [CrossRef]
- Ahn, N.; Kang, S.M.; Lee, J.W.; Choi, M.; Park, N.G. Thermodynamic Regulation of CH3NH3PbI3 Crystal Growth and Its Effect on Photovoltaic Performance of Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 19901–19906. [Google Scholar] [CrossRef]
- Ko, H.; Sin, D.H.; Kim, M.; Cho, K. Predicting the Morphology of Perovskite Thin Films Produced by Sequential Deposition Method: A Crystal Growth Dynamics Study. Chem. Mater. 2017, 29, 1165–1174. [Google Scholar] [CrossRef]
- Chauhan, M.; Zhong, Y.; Schötz, K.; Tripathi, B.; Köhler, A.; Huettner, S.; Panzer, F. Investigating Two-Step MAPbI3 Thin Film Formation during Spin Coating by Simultaneous: In Situ Absorption and Photoluminescence Spectroscopy. J. Mater. Chem. A 2020, 8, 5086–5094. [Google Scholar] [CrossRef]
- Borchert, J.; Milot, R.L.; Patel, J.B.; Davies, C.L.; Wright, A.D.; Martínez Maestro, L.; Snaith, H.J.; Herz, L.M.; Johnston, M.B. Large-Area, Highly Uniform Evaporated Formamidinium Lead Triiodide Thin Films for Solar Cells. ACS Energy Lett. 2017, 2, 2799–2804. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- Luo, L.; Ku, Z.; Li, W.; Zheng, X.; Li, X.; Huang, F.; Peng, Y.; Ding, L.; Cheng, Y.B. 19.59% Efficiency from Rb0.04-Cs0.14FA0.86Pb(BryI1−y)3 Perovskite Solar Cells Made by Vapor–solid Reaction Technique. Sci. Bull. 2021, 66, 962–964. [Google Scholar] [CrossRef]
- Peng, Y.; Jing, G.; Cui, T. A Hybrid Physical-Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 12436–12442. [Google Scholar] [CrossRef]
- Soltanpoor, W.; Dreessen, C.; Sahiner, M.C.; Susic, I.; Afshord, A.Z.; Chirvony, V.S.; Boix, P.P.; Gunbas, G.; Yerci, S.; Bolink, H.J. Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 8257–8265. [Google Scholar] [CrossRef]
- Chen, C.-W.; Kang, H.-W.; Hsiao, S.-Y.; Yang, P.-F.; Chiang, K.-M.; Lin, H.-W. Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Adv. Mater. 2014, 26, 6647–6652. [Google Scholar] [CrossRef]
- Leyden, M.R.; Ono, L.K.; Raga, S.R.; Kato, Y.; Wang, S.; Qi, Y. High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition. J. Mater. Chem. A 2014, 2, 18742–18745. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; He, S.; Jiang, Y.; Qi, Y. Metal Halide Perovskite Solar Cells by Modified Chemical Vapor Deposition. J. Mater. Chem. A 2021, 9, 22759–22780. [Google Scholar] [CrossRef]
- Qiu, L.; He, S.; Jiang, Y.; Son, D.Y.; Ono, L.K.; Liu, Z.; Kim, T.; Bouloumis, T.; Kazaoui, S.; Qi, Y. Hybrid Chemical Vapor Deposition Enables Scalable and Stable Cs-FA Mixed Cation Perovskite Solar Modules with a Designated Area of 91.8 cm2 Approaching 10% Efficiency. J. Mater. Chem. A 2019, 7, 6920–6929. [Google Scholar] [CrossRef]
- Shen, P.S.; Chen, J.S.; Chiang, Y.H.; Li, M.H.; Guo, T.F.; Chen, P. Low-Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large-Area Module. Adv. Mater. Interfaces 2016, 3, 1500849. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, J.; Liu, S.; Albrecht, S.; Hagfeldt, A.; Wang, Z. Intermediate Phase Engineering of Halide Perovskites for Photovoltaics. Joule 2022, 6, 315–339. [Google Scholar] [CrossRef]
- Xiang, Y.; Ma, Z.; Huang, Y.; Zhang, W.; Peng, C.; Li, H. Strategy for Crystallization Management of Perovskite: Incorporation of FAI in a PbI2 Precursor for a Two-Step Spin-Coating Process. ACS Appl. Energy Mater. 2021, 4, 12091–12098. [Google Scholar] [CrossRef]
- Tong, G.; Son, D.Y.; Ono, L.K.; Liu, Y.; Hu, Y.; Zhang, H.; Jamshaid, A.; Qiu, L.; Liu, Z.; Qi, Y. Scalable Fabrication of >90 cm2 Perovskite Solar Modules with >1000 H Operational Stability Based on the Intermediate Phase Strategy. Adv. Energy Mater. 2021, 11, 2003712. [Google Scholar] [CrossRef]
- Zuo, L.; Guo, H.; DeQuilettes, D.W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D.S.; Dunn, B.; Wang, M.; et al. Polymer-Modified Halide Perovskite Films for Efficient and Stable Planar Heterojunction Solar Cells. Sci. Adv. 2017, 3, e1700106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, C.; Lu, J.F.; Singh, M.; Ng, A.; Yu, W.; Lin, H.; Satapathi, S.; Hu, H. Mixed Dimensional Perovskites Heterostructure for Highly Efficient and Stable Perovskite Solar Cells. Sol. RRL 2021, 6, 2100879. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, L.; Han, G.; Li, Y.; Li, M.; Li, H. Effects of Methylammonium Acetate on the Perovskite Film Quality for the Perovskite Solar Cell. Org. Electron. 2019, 65, 201–206. [Google Scholar] [CrossRef]
- Yang, L.; Ma, X.; Shang, X.; Gao, D.; Wang, C.; Li, M.; Chen, C.; Zhang, B.; Xu, S.; Zheng, S.; et al. Zwitterionic Ionic Liquid Confer Defect Tolerance, High Conductivity, and Hydrophobicity toward Efficient Perovskite Solar Cells Exceeding 22% Efficiency. Sol. RRL 2021, 5, 2100352. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, M.; Chen, Z.; Yu, W.; Ren, Z.; Liu, K.; Huang, J.; Zhang, Y.; Liang, Q.; Chandran, H.T.; et al. Bottom-Up Quasi-Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving High-Efficiency Solar Cells via Template-Guided Crystallization. Adv. Mater. 2021, 33, 2100009. [Google Scholar] [CrossRef]
- Gong, X.; Guan, L.; Pan, H.; Sun, Q.; Zhao, X.; Li, H.; Pan, H.; Shen, Y.; Shao, Y.; Sun, L.; et al. Highly Efficient Perovskite Solar Cells via Nickel Passivation. Adv. Funct. Mater. 2018, 28, 1804286. [Google Scholar] [CrossRef]
- Su, L.; Xiao, Y.; Han, G.; Lu, L.; Li, H.; Zhu, M. Performance Enhancement of Perovskite Solar Cells Using Trimesic Acid Additive in the Two-Step Solution Method. J. Power Sources 2019, 426, 11–15. [Google Scholar] [CrossRef]
- Abzieher, T.; Mathies, F.; Hetterich, M.; Welle, A.; Gerthsen, D.; Lemmer, U.; Paetzold, U.W.; Powalla, M. Additive-Assisted Crystallization Dynamics in Two-Step Fabrication of Perovskite Solar Cells. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1700509. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Z.; Chueh, C.C.; Liu, H.; Peng, B.; Petrone, A.; Li, X.; Wang, L.; Jen, A.K.Y. Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1601307. [Google Scholar] [CrossRef]
- Li, W.; Fan, J.; Li, J.; Mai, Y.; Wang, L. Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. J. Am. Chem. Soc. 2015, 137, 10399–10405. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Y.; Du, J.; Wang, Y.; Zhang, X.; Liu, Y. Global Control of CH3NH3PbI3 Formation with Multifunctional Ionic Liquid for Perovskite Hybrid Photovoltaics. J. Phys. Chem. C 2018, 122, 10699–10705. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Wang, L.; Li, L.; Xu, Z.; Jiao, H.; Liu, P.; Zhu, C.; Zai, H.; Sun, M.; et al. Impacts of Alkaline on the Defects Property and Crystallization Kinetics in Perovskite Solar Cells. Nat. Commun. 2019, 10, 1112. [Google Scholar] [CrossRef]
- Cai, F.; Yan, Y.; Yao, J.; Wang, P.; Wang, H.; Gurney, R.S.; Liu, D.; Wang, T. Ionic Additive Engineering Toward High-Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density. Adv. Funct. Mater. 2018, 28, 1801985. [Google Scholar] [CrossRef]
- Cao, J.; Wang, F.; Yu, H.; Zhou, Y.; Lu, H.; Zhao, N.; Wong, C.P. Porous PbI2 Films for the Fabrication of Efficient, Stable Perovskite Solar Cells: Via Sequential Deposition. J. Mater. Chem. A 2016, 4, 10223–10230. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, J.; Zhao, Y.; Li, Y.; Shi, J.; Li, Y.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. Application of Cesium on the Restriction of Precursor Crystallization for Highly Reproducible Perovskite Solar Cells Exceeding 20% Efficiency. ACS Appl. Mater. Interfaces 2018, 10, 9503–9513. [Google Scholar] [CrossRef] [PubMed]
- Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H.L.W.; Yan, F. Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Irrespective of the Humidity. Nat. Commun. 2016, 7, 11105. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy Environ. Sci. 2014, 7, 2934–2938. [Google Scholar] [CrossRef]
- Cao, X.; Zhi, L.; Li, Y.; Fang, F.; Cui, X.; Yao, Y.; Ci, L.; Ding, K.; Wei, J. Control of the Morphology of PbI2 Films for Efficient Perovskite Solar Cells by Strong Lewis Base Additives. J. Mater. Chem. C 2017, 5, 7458–7464. [Google Scholar] [CrossRef]
- Shahbazi, S.; Li, M.Y.; Fathi, A.; Diau, E.W.G. Realizing a Cosolvent System for Stable Tin-Based Perovskite Solar Cells Using a Two-Step Deposition Approach. ACS Energy Lett. 2020, 5, 2508–2511. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Luo, X.; Wang, H.; Furue, M.; Bessho, T.; Zhang, Y.; Nakazaki, J.; Segawa, H.; Han, L. Lead-Free Perovskite Solar Cells with Over 10% Efficiency and Size 1 cm2 Enabled by Solvent–Crystallization Regulation in a Two-Step Deposition Method. ACS Energy Lett. 2022, 7, 425–431. [Google Scholar] [CrossRef]
- Han, Y.; Xie, H.; Lim, E.L.; Bi, D. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. Sol. RRL 2022, 2101007. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Lin, X.; Wu, T.; Han, Q.; Zhang, Y.; Han, L. Effects of A Site Doping on the Crystallization of Perovskite Films. J. Mater. Chem. A 2021, 9, 1372–1394. [Google Scholar] [CrossRef]
- Yu, B.B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Adv. Mater. 2021, 33, 2102055. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Ge, C.; Zhou, X.; Liang, X.; Duan, D.; Lin, H.; Zhu, Q.; Hu, H. Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method. Crystals 2022, 12, 815. https://doi.org/10.3390/cryst12060815
Wang F, Ge C, Zhou X, Liang X, Duan D, Lin H, Zhu Q, Hu H. Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method. Crystals. 2022; 12(6):815. https://doi.org/10.3390/cryst12060815
Chicago/Turabian StyleWang, Fei, Chuangye Ge, Xianfang Zhou, Xiao Liang, Dawei Duan, Haoran Lin, Quanyao Zhu, and Hanlin Hu. 2022. "Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method" Crystals 12, no. 6: 815. https://doi.org/10.3390/cryst12060815
APA StyleWang, F., Ge, C., Zhou, X., Liang, X., Duan, D., Lin, H., Zhu, Q., & Hu, H. (2022). Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method. Crystals, 12(6), 815. https://doi.org/10.3390/cryst12060815