Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Tridentate Pyrazole Ligand
2.3. DFT Calculations
2.4. Synthesis of Co(II)/Pyrazole Complex
2.5. Catecholase Studies
3. Results
3.1. Synthesis, EDX, PXRD and DFT-Optimization
3.2. IR Analysis
3.3. Thermal Analysis
3.4. MEP
3.5. HOMO/LUMO, DFT and TD-DFT
3.6. Catalytic Activity toward Catecholase and Phenoxazinone
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- La, M.G.; Ardizzoia, G.A. The Role of the Pyrazolate Ligand in Building Polynuclear Transition Metal Systems. Prog. Inorg. Chem. 1997, 46, 151–238. [Google Scholar]
- Trofimenko, S. Recent Advances in Poly (Pyrazolyl) Borate (Scorpionate) Chemistry. Chem. Rev. 1993, 93, 943–980. [Google Scholar] [CrossRef]
- Shin, S.; Ahn, S.H.; Choi, S.; Choi, S.-I.; Nayab, S.; Lee, H. Synthesis and Structural Characterization of 5-Coordinate Cobalt(II), Copper(II) and 4-Coordinate Zinc(II) Complexes Containing N′-Cyclopentyl Substituted N, N-Bispyrazolylmethylamine. Polyhedron 2016, 110, 149–156. [Google Scholar] [CrossRef]
- Shin, S.; Ahn, S.H.; Jung, M.J.; Nayab, S.; Lee, H. Synthesis, Structure and Methyl Methacrylate Polymerization of Cobalt (II), Zinc (II) and Cadmium (II) Complexes with N, N′, N-Bidentate versus N, N′, N-Tridentate N, N′, N-Bis ((1H-Pyrazol-1-Yl) Methyl) Amines. J. Coord. Chem. 2016, 69, 2391–2402. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Woo, H.Y.; Lee, H.; Lee, H. X-ray Crystal Structures and MMA Polymerization of Cadmium (II) Complexes with Bidentate Pyrazole Ligands: The Formation of Monomers or Dimers as a Function of a Methyl Substituent on the Pyrazole and Aniline Rings. Appl. Organomet. Chem. 2014, 28, 445–453. [Google Scholar] [CrossRef]
- Yang, G. Synthesis and Crystal Structure of a Cobalt(II) Complex with Tris (1-Pyrazolylmethyl) Amine. J. Chem. Crystallogr. 2004, 34, 269–274. [Google Scholar] [CrossRef]
- Pañella, A.; Pons, J.; García-Antón, J.; Solans, X.; Font-Bardia, M.; Ros, J. Synthesis of New Palladium (II) Compounds with Several Bidentate Nitrogen-Donor Ligands: Structural Analyses by 1H and 13C {1H} NMR Spectroscopy and Crystal Structures. Inorganica Chim. Acta 2006, 359, 2343–2349. [Google Scholar] [CrossRef]
- Lima, M.J.; Tavares, P.B.; Silva, A.M.T.; Silva, C.G.; Faria, J.L. Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Using Metal-Loaded g-C3N4 Photocatalysts. Catal. Today 2017, 287, 70–77. [Google Scholar] [CrossRef]
- Titi, A.; Shiga, T.; Oshio, H.; Touzani, R.; Hammouti, B.; Mouslim, M.; Warad, I. Synthesis of Novel Cl2Co4L6 Clusterusing 1-Hydroxymethyl-3, 5-Dimethylpyrazole (LH) Ligand: Crystal Structure, Spectral, Thermal, Hirschfeld Surface Analysis and Catalytic Oxidation Evaluation. J. Mol. Struct. 2020, 1199, 126995. [Google Scholar] [CrossRef]
- Bouroumane, N.; El Boutaybi, M.; Chetioui, S.; Bougueria, H.; Djedouani, A.; Bahari, Z.; Oussaid, A. Five Naphthalene Azo Benzene Ligands Complexed with Copper Metals: An Excellent in-Situ Catecholase Catalyst. Mater. Today Proc. 2021, 45, 7603–7607. [Google Scholar] [CrossRef]
- Ayad, M.I. Synthesis, Characterization and Catechol Oxidase Biomimetic Catalytic Activity of Cobalt(II) and Copper(II) Complexes Containing N2O2 Donor Sets of Imine Ligands. Arab. J. Chem. 2016, 9, S1297–S1306. [Google Scholar] [CrossRef]
- Mouadili, A.; El Ouafi, A.; Attayibat, A.; Radi, S.; Touzani, R. Catecholase and Tyrosinase Biomimetic Activities for Heteroatom Donor Ligands: Influence of Five Parameters. J. Mater. Environ. Sci. 2015, 6, 2166–2173. [Google Scholar]
- Yang, L.; Lee, Y.-A.; Jung, O.-S. Unprecedented Coordination Solvate Effects of Bimetallic Copper (II) Cages on Catechol Oxidation Catalysis. Inorg. Chem. Commun. 2019, 104, 48–53. [Google Scholar] [CrossRef]
- Ngo, K.T.; Varner, E.L.; Michael, A.C.; Weber, S.G. Monitoring Dopamine Responses to Potassium Ion and Nomifensine by In Vivo Microdialysis with Online Liquid Chromatography at One-Minute Resolution. ACS Chem. Neurosci. 2017, 8, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.N.F. Scherer, and PB Messersmith. Single-molecule Mech. mussel Adhes. Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003. [Google Scholar] [CrossRef] [Green Version]
- Citek, C.; Lin, B.-L.; Phelps, T.E.; Wasinger, E.C.; Stack, T.D.P. Primary Amine Stabilization of a Dicopper (III) Bis (μ-Oxo) Species: Modeling the Ligation in PMMO. J. Am. Chem. Soc. 2014, 136, 14405–14408. [Google Scholar] [CrossRef]
- Olmedo, P.; Moreno, A.A.; Sanhueza, D.; Balic, I.; Silva-Sanzana, C.; Zepeda, B.; Verdonk, J.C.; Arriagada, C.; Meneses, C.; Campos-Vargas, R. A Catechol Oxidase AcPPO from Cherimoya (Annona Cherimola Mill.) is Localized to the Golgi Apparatus. Plant Sci. 2018, 266, 46–54. [Google Scholar] [CrossRef]
- Mason, H.S. The Chemistry of Melanin: Vi. Mechanism of the Oxidation of Catechol by Tyrosinase. J. Biol. Chem. 1949, 181, 803–812. [Google Scholar] [CrossRef]
- Petrik, I.D.; Davydov, R.; Ross, M.; Zhao, X.; Hoffman, B.; Lu, Y. Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin. J. Am. Chem. Soc. 2016, 138, 1134–1137. [Google Scholar] [CrossRef] [Green Version]
- Marion, R.; Muthusamy, G.; Geneste, F. Continuous Flow Catalysis with a Biomimetic Copper(II) Complex Covalently Immobilized on Graphite Felt. J. Catal. 2012, 286, 266–272. [Google Scholar] [CrossRef] [Green Version]
- El Boutaybi, M.; Bouroumane, N.; Azzouzi, M.; Bacroume, S.; Touzani, R.; Catecholase, Z. Phenoxazinone Synthase and Copper (CuII) Complex Based on Pyrazolic Ligand: Preparation and Characterization. Mater. Today Proc. 2023, 1–7. [Google Scholar] [CrossRef]
- Misawa-Suzuki, T.; Ikeda, R.; Komatsu, R.; Toriba, R.; Miyamoto, R.; Nagao, H. Geometry and Electronic Structures of Cobalt(II) and Iron(III) Complexes Bearing Bis(2-pyridylmethyl)ether or Alkylbis(2-pyridylmethyl)amine. Polyhedron 2022, 218, 115735–115743. [Google Scholar] [CrossRef]
- Titi, A.; Almutairi, S.; Touzani, R.; Messali, M.; Tillardd, M.; Hammouti, B.; El Kodadi, M.; Eddikee, D.; Zarrouk, A.; Warad, I. A new mixed pyrazole-diamine/Ni(II) complex, Crystal Structure, Physicochemical, Thermal and Antibacterial Investigation. J. Mol. Struct. 2021, 1236, 130304. [Google Scholar] [CrossRef]
- Haoyu, S.Y.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar]
- Badran, I.; Tighadouini, S.; Radi, S.; Zarrouk, A.; Warad, I. Experimental and first-principles study of a new hydrazine derivative for DSSC applications. J. Mol. Struct. 2020, 1229, 129799. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef] [Green Version]
- Peverati, R.; Truhlar, D.G. Truhlar, Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120476. [Google Scholar] [CrossRef]
- Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. PCCP 2017, 19, 32184–32215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badran, I.; Rauk, A.; Shi, Y. New Orbital Symmetry-Allowed Route for Cycloreversion of Silacyclobutane and Its Methyl Derivatives. J. Phys. Chem. A 2019, 123, 1749–1757. [Google Scholar] [CrossRef]
- Badran, I.; Rauk, A.; Shi, Y.J. Theoretical Study on the Ring-Opening of 1,3-Disilacyclobutane and H2 Elimination. J. Phys. Chem. A 2012, 116, 11806–11816. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Shawnee, KA, USA, 2009. [Google Scholar]
- Hosny, N.M. Solvothermal Synthesis, Thermal and Adsorption Properties of Metal-Organic Frameworks Zn and CoZn (DPB). J. Therm. Anal. Calorim. 2015, 122, 89–95. [Google Scholar] [CrossRef]
- Scrocco, E.; Tomasi, J. Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials. In Advances in Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 1978; Volume 11, pp. 115–193. [Google Scholar]
- Munoz-Caro, C.; Nino, A.; Senent, M.L.; Leal, J.M.; Ibeas, S. Modeling of Protonation Processes in Acetohydroxamic Acid. J. Org. Chem. 2000, 65, 405–410. [Google Scholar] [CrossRef] [PubMed]
- El Ati, R.; Takfaoui, A.; El Kodadi, M.; Touzani, R.; Yousfi, E.B.; Almalki, F.A.; Hadda, T.B. Catechol Oxidase and Copper (I/II) Complexes Derived from Bipyrazol Ligand: Synthesis, Molecular Structure Investigation of New Biomimetic Functional Model and Mechanistic Study. Mater. Today Proc. 2019, 13, 1229–1237. [Google Scholar] [CrossRef]
- Adam, F.; Batagarawa, M.S. Tetramethylguanidine–Silica Nanoparticles as an Efficient and Reusable Catalyst for the Synthesis of Cyclic Propylene Carbonate from Carbon Dioxide and Propylene Oxide. Appl. Catal. A Gen. 2013, 454, 164–171. [Google Scholar] [CrossRef]
- Boyaala, R.; El Ati, R.; Khoutoul, M.; El Kodadi, M.; Touzani, R.; Hammouti, B. Biomimetic Oxidation of Catechol Employing Complexes Formed in Situ with Heterocyclic Ligands and Different Copper(II) Salts. J. Iran. Chem. Soc. 2018, 15, 85–92. [Google Scholar] [CrossRef]
- Mouadili, A.; Abrigach, F.; Khoutoul, M.; Zarrouk, A.; Benchat, N.; Touzani, R. Biomimetic Oxidation of Catechol Employing Complexes Formed In-Situ with NH-Pyrazole Ligands and Transition Metallic Salts. J. Chem. Pharm. Res. 2015, 7, 968–979. [Google Scholar]
- Mouadili, A.; Attayibat, A.; Radi, S.; Touzani, R. Catecholase Activity Studies of Two Multidendate Ligands Based on Pyrazole. Arab. J. Chem. Environ. Res. 2014, 1, 24–32. [Google Scholar]
- Bedoya, J.C.; Valdez, R.; Cota, L.; Alvarez-Amparán, M.A.; Olivas, A. Performance of Al-MCM-41 Nanospheres as Catalysts for Dimethyl Ether Production. Catal. Today 2022, 388, 55–62. [Google Scholar] [CrossRef]
- Muley, A.; Karumban, K.S.; Kumbhakar, S.; Giri, B.; Maji, S. High Phenoxazinone Synthase Activity of Two Mononuclear Cis-Dichloro Cobalt(II) Complexes with a Rigid Pyridyl Scaffold. New J. Chem. 2022, 46, 521–532. [Google Scholar] [CrossRef]
- Kumbhakar, S.; Giri, B.; Muley, A.; Karumban, K.S.; Maji, S. Design, Synthesis, Structural, Spectral, and Redox Properties and Phenoxazinone Synthase Activity of Tripodal Pentacoordinate Mn (II) Complexes with Impressive Turnover Numbers. Dalt. Trans. 2021, 50, 16601–16612. [Google Scholar] [CrossRef]
- Dhara, A.K.; Maity, S.; Dhar, B.B. Visible-Light-Mediated Synthesis of Substituted Phenazine and Phenoxazinone Using Eosin Y as a Photoredox Catalyst. Org. Lett. 2021, 23, 3269–3273. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Mahmoud, A.H.; Khalil, K.M.S. Synthesis of Highly Crystalline LaFeO 3 Nanospheres for Phenoxazinone Synthase Mimicking Activity. RSC Adv. 2021, 11, 17746–17754. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.; Ibarra, D.; Morillo, Á.; Llovera, L.; González, T.; Zárraga, J.; Larreal, O.; Guerra, M. Synthesis, Characterization and Catecholase Biomimetic Activity of Novel Cobalt(II), Copper(II), and Iron(II) Complexes Bearing Phenylene-Bis-Benzimidazole Ligand. Polyhedron 2021, 203, 115232. [Google Scholar] [CrossRef]
- Nehar, O.K.; Mahboub, R.; Louhibi, S.; Roisnel, T.; Aissaoui, M. New Thiosemicarbazone Schiff Base Ligands: Synthesis, Characterization, Catecholase Study and Hemolytic Activity. J. Mol. Struct. 2020, 1204, 127566–127576. [Google Scholar] [CrossRef]
No. | Bond | Å | No. | Angle | (°) | No. | Angle | (°) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | C1 | C2 | 1.3985 | 1 | C2 | C1 | C6 | 120.7 | 23 | N7 | N11 | C10 | 109.57 |
2 | C1 | C6 | 1.3967 | 2 | C2 | C1 | Cl16 | 118.76 | 24 | N7 | N11 | C13 | 114.48 |
3 | C1 | Cl16 | 1.7782 | 3 | C6 | C1 | Cl16 | 120.54 | 25 | C10 | N11 | C13 | 134.35 |
4 | C2 | N3 | 1.3432 | 4 | C1 | C2 | N3 | 117.93 | 26 | C4 | N12 | C13 | 120.26 |
5 | N3 | C4 | 1.3579 | 5 | C2 | N3 | C4 | 121.96 | 27 | C4 | N12 | Co17 | 89.11 |
6 | N3 | Co17 | 1.9101 | 6 | C2 | N3 | Co17 | 141.77 | 28 | C13 | N12 | Co17 | 105.77 |
7 | C4 | C5 | 1.3717 | 7 | C4 | N3 | Co17 | 96.24 | 29 | N11 | C13 | N12 | 103.1 |
8 | C4 | N12 | 1.4737 | 8 | N3 | C4 | C5 | 122.93 | 30 | N3 | Co17 | N7 | 141.71 |
9 | C5 | C6 | 1.4084 | 9 | N3 | C4 | N12 | 104.6 | 31 | N3 | Co17 | N12 | 70.04 |
10 | N7 | C8 | 1.3819 | 10 | C5 | C4 | N12 | 132.46 | 32 | N3 | Co17 | Cl19 | 89.87 |
11 | N7 | N11 | 1.4364 | 11 | C4 | C5 | C6 | 116.5 | 33 | N3 | Co17 | Cl20 | 108.4 |
12 | N7 | Co17 | 1.8122 | 12 | C1 | C6 | C5 | 119.98 | 34 | N7 | Co17 | N12 | 85.79 |
13 | C8 | C9 | 1.3949 | 13 | C8 | N7 | N11 | 106.46 | 35 | N7 | Co17 | Cl19 | 93.17 |
14 | C8 | C15 | 1.4899 | 14 | C8 | N7 | Co17 | 139.58 | 36 | N7 | Co17 | Cl20 | 105.99 |
15 | C9 | C10 | 1.4108 | 15 | N11 | N7 | Co17 | 113.06 | 37 | N12 | Co17 | Cl19 | 143.67 |
16 | C10 | N11 | 1.3608 | 16 | N7 | C8 | C9 | 108.13 | 38 | N12 | Co17 | Cl20 | 104.09 |
17 | C10 | C14 | 1.49 | 17 | N7 | C8 | C15 | 123.31 | 39 | Cl19 | Co17 | Cl20 | 111.03 |
18 | N11 | C13 | 1.4638 | 18 | C9 | C8 | C15 | 128.51 | |||||
19 | N12 | C13 | 1.5166 | 19 | C8 | C9 | C10 | 109.06 | |||||
20 | N12 | Co17 | 1.994 | 20 | C9 | C10 | N11 | 106.71 | |||||
21 | Co17 | Cl19 | 2.2143 | 21 | C9 | C10 | C14 | 128.81 | |||||
22 | Co17 | Cl20 | 2.2204 | 22 | N11 | C10 | C14 | 124.45 |
No. | λnm | f | Major Contributions |
---|---|---|---|
1 | 685.1 | 0.024 | HOMO(A)- > LUMO(A) (97%) |
2 | 597.9 | 0.004 | HOMO(B)- > LUMO(B) (71%) |
3 | 562.11 | 0.016 | H-2(A)- > LUMO(A) (25%), H-2(B)- > L + 1(B) (38%), H-1(B)- > L + 1(B) (23%) |
4 | 501.7 | 0.014 | H-1(B)- > LUMO(B) (74%) |
5 | 482.2 | 0.013 | H-2(B)- > LUMO(B) (51%), HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (22%) |
6 | 472.1 | 0.012 | H-2(B)- > LUMO(B) (32%), HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (39%) |
7 | 448.3 | 0.011 | H-1(A)- > LUMO(A) (24%), HOMO(A)- > L + 1(A) (10%), HOMO(B)- > L + 2(B) (13%), HOMO(B)- > L + 3(B) (30%) |
8 | 432.7 | 0.016 | HOMO(A)- > L + 1(A) (26%), H-2(B)- > L + 2(B) (39%), H-1(B)- > L + 1(B) (14%) |
9 | 417.7 | 0.014 | H-3(A)- > LUMO(A) (25%), H-2(B)- > L + 1(B) (26%), H-1(B)- > L + 1(B) (11%), H-1(B)- > L + 2(B) (20%) |
10 | 365.9 | 0.0411 | H-2(A)- > L + 1(A) (83%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutaybi, M.E.; Bouroumane, N.; Azzouzi, M.; Aaddouz, M.; Bacroume, S.; El Miz, M.; Touzani, R.; Bahari, Z.; Zarrouk, A.; El-Marghany, A.; et al. Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation. Crystals 2023, 13, 155. https://doi.org/10.3390/cryst13020155
Boutaybi ME, Bouroumane N, Azzouzi M, Aaddouz M, Bacroume S, El Miz M, Touzani R, Bahari Z, Zarrouk A, El-Marghany A, et al. Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation. Crystals. 2023; 13(2):155. https://doi.org/10.3390/cryst13020155
Chicago/Turabian StyleBoutaybi, Mohamed El, Nadia Bouroumane, Mohamed Azzouzi, Mohamed Aaddouz, Said Bacroume, Mohamed El Miz, Rachid Touzani, Zahra Bahari, Abdelkader Zarrouk, Adel El-Marghany, and et al. 2023. "Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation" Crystals 13, no. 2: 155. https://doi.org/10.3390/cryst13020155
APA StyleBoutaybi, M. E., Bouroumane, N., Azzouzi, M., Aaddouz, M., Bacroume, S., El Miz, M., Touzani, R., Bahari, Z., Zarrouk, A., El-Marghany, A., Jama, C., Abu-Rayyan, A., & Warad, I. (2023). Synthesis, Characterization, DFT, and Thermogravimetric Analysis of Neutral Co(II)/Pyrazole Complex, Catalytic Activity toward Catecholase and Phenoxazinone Oxidation. Crystals, 13(2), 155. https://doi.org/10.3390/cryst13020155