Bipolar Switching Properties of GdOx:SiO2 Thin Film Resistive Random Access Memory Using Co-Sputtering Technology
Abstract
:1. Introduction
2. Experiment Detail
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, L.; Dai, T.; Liu, K.; Chang, K.-C.; Zhang, R.; Lin, X.; Liu, H.-J.; Lai, Y.-C.; Kuo, T.-P. Achieving complementary resistive switching and multi-bit storage goals by modulating the dual-ion reaction through supercritical fluid-assisted ammoniation. Nanoscale 2021, 13, 14035–14040. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, K.-C.; Lin, X.; Lai, Y.-C.; Zhang, R.; Kuo, T.-P. Variable-temperature activation energy extraction to clarify the physical and chemical mechanisms of the resistive switching process. Nanoscale 2020, 12, 15721–15724. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, K.-C.; Ye, C.; Lin, X.; Zhang, R.; Xu, Z.; Zhou, Y.; Xiong, W.; Kuo, T.-P. An indirect way to achieve comprehensive performance improvement of resistive memory: When hafnium meets ITO in an electrode. Nanoscale 2020, 12, 3267–3272. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Dai, T.; Li, L.; Lin, X.; Zhang, S.; Lai, Y.-C.; Liu, H.-J.; Syu, Y.-E. Unveiling the influence of surrounding materials and realization of multi-level storage in resistive switching memory. Nanoscale 2020, 12, 22070–22074. [Google Scholar] [CrossRef]
- Chang, K.-C.; Zhang, R.; Chang, T.-C.; Tsai, T.-M.; Chu, T.-J.; Chen, H.-L.; Shih, C.-C.; Pan, C.-H.; Su, Y.-T.; Wu, P.-J.; et al. High performance, excellent reliability multifunctional graphene oxide doped memristor achieved by self-protect ive compliance current structure. In Proceedings of the 2014 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 33–34. [Google Scholar] [CrossRef]
- Ye, C.; Xu, Z.; Chang, K.-C.; Li, L.; Lin, X.; Zhang, R.; Zhou, Y.; Xiong, W.; Kuo, T.-P. Hafnium nanocrystals observed in a HfTiO compound film bring about excellent performance of flexible selectors in memory integration. Nanoscale 2019, 11, 20792–20796. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-C.; Chang, T.-C.; Chen, S.-C.; Lin, Y.-S.; Huang, H.-C.; Gan, D.-S. Influence of Bias-Induced Copper Diffusion on the Resistive Switching Characteristics of a SiON Thin Film. Electrochem. Solid State Lett. 2011, 14, H93–H95. [Google Scholar] [CrossRef]
- Bez, R.; Pirovano, A. Non-volatile memory technologies: Emerging concepts and new materials. Mater. Sci. Semicond. Process. 2004, 7, 349–355. [Google Scholar] [CrossRef]
- Ikegawa, S.; Mancoff, F.B.; Janesky, J.; Aggarwal, S. Magnetoresistive Random Access Memory: Present and Future. IEEE Trans. Electron Devices 2020, 67, 1407–1419. [Google Scholar] [CrossRef]
- Vorotilov, K.A.; Sigov, A.S. Ferroelectric memory. Phys. Solid State 2012, 54, 894–899. [Google Scholar] [CrossRef]
- Wong, H.S.P.; Raoux, S.; Liang, J.; Reifenberg, J.; Rajendran, B.; Asheghi, M.; Goodson, K. Phase Change Memory. Proc. IEEE 2010, 98, 2201–2227. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Chen, P.-H.; Lin, C.-Y.; Chang, T.-C. An Ultra Energy-Saving Metal/Insulator/Metal Structure for One Selector-One RRAM. In Proceedings of the 2020 IEEE International Interconnect Technology Conference (IITC), San Jose, CA, USA, 5–8 October 2020; pp. 52–54. [Google Scholar] [CrossRef]
- Patel, K.; Cottom, J.; Bosman, M.; Kenyon, A.J.; Shluger, A.L. An oxygen vacancy mediated Ag reduction and nucleation mechanism in SiO2 RRAM devices. Microelectron. Reliab. 2019, 98, 144–152. [Google Scholar] [CrossRef]
- Chen, C.Y.; Goux, L.; Fantini, A.; Redolfi, A.; Groeseneken, G.; Jurczak, M. Doped Gd-O Based RRAM for Embedded Application. In Proceedings of the 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 15–18 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, K.H.; Cheng, C.; Wang, N.; Hung, H.; Li, C.; Wu, S. First Order Rate Law Analysis for Reset State in Vanadium Oxide Thin Film Random Resist Access Memory Devices. Nanomaterials 2023, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.M.; Chang, K.C.; Chang, T.C.; Syu, Y.E.; Chuang, S.L. Low temperature improvement method on Zn:SiOx, resistive random access memory devices. IEEE Electron Device Lett. 2013, 34, 511–513. [Google Scholar]
- Potlog, T.; Ghimpu, L.; Suman, V.; Pantazi, A.; Enachescu, M. Influence of RF sputtering power and thickness on structural and optical properties of NiO thin films. Mater. Res. Express 2019, 6, 096440. [Google Scholar] [CrossRef]
- Chu, T.-J.; Chang, T.-C.; Tsai, T.-M.; Wu, H.-H.; Chen, J.-H.; Chang, K.-C.; Young, T.-F.; Chen, K.-H.; Syu, Y.-E.; Chang, G.-W.; et al. Charge Quantity Influence on Resistance Switching Characteristic During Forming Process. IEEE Electron Device Lett. 2013, 34, 502–504. [Google Scholar] [CrossRef]
- Chang, K.C.; Chang, T.C.; Tsai, T.M.; Zhang, R.; Hung, Y.C.; Syu, Y.E.; Chang, Y.F.; Chen, M.C.; Chu, T.J.; Chen, H.L.; et al. Physical and chemical mechanisms in oxide-based resistance random access memory. Nanoscale Res Lett. 2015, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-H.; Cheng, C.-M.; Li, C.-Y.; Huang, S.-J. Hopping conduction distance of bipolar switching GdOx resistance random access memory thin films devices modified by different constant compliance current. Microelectron. Reliab. 2018, 91, 330–334. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, G.; Yu, T.; Chen, Y.; Yangb, F.; Zhao, Y. Multi-factor-controlled ReRAM devices and their applications. J. Mater. Chem. C 2022, 10, 8895–8921. [Google Scholar] [CrossRef]
- Sun, B.; Guo, T.; Zhou, G.; Ranjand, S.; Jiao, Y.; Wei, L.; Zhou, Y.; Wu, Y. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater. Today Phys. 2021, 18, 100393. [Google Scholar] [CrossRef]
- Liao, C.; Hu, X.; Liu, X.; Sun, B.; Zhou, G. Self-selective analogue FeOx-based memristor induced by the electron transport in the defect energy level. Appl. Phys. Lett. 2022, 121, 123505. [Google Scholar] [CrossRef]
- Sun, B.; Chen, Y.; Xiao, M.; Zhou, G.; Ranjan, S.; Hou, W.; Zhu, X.; Zhao, Y.; Redfern, S.; Zhou, Y.N. A Unified Capacitive-Coupled Memristive Model for the Nonpinched Current–Voltage Hysteresis Loop. Nano Lett. 2019, 19, 6461–6465. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Tsai, T.-M.; Cheng, C.-M.; Huang, S.-J.; Chang, K.-C.; Liang, S.-P.; Young, T.-F. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments. Materials 2017, 11, 43. [Google Scholar] [CrossRef] [PubMed]
Rf power (Gd) | 20, 40, 60 W |
rf power (SiO2) | 100 W |
Gas flow (Ar) | 10 sccm |
Gas flow (O2) | 8 sccm |
Time (min) | 10 |
Working pressure | 20 mTorr |
Rf power (Gd) | 20 W |
rf power (SiO2) | 100 W |
Gas flow (Ar) | 10 sccm |
Gas flow (O2) | 4, 6, 8, 10 sccm |
Times (min) | 10 |
Working pressure | 20 mTorr |
Rf power (Gd) | 20 W |
rf power (SiO2) | 100 W |
RTA | no, 300, 400 °C |
Gas flow (Ar) | 10 sccm |
Gas flow (O2) | 8 sccm |
Working pressure | 20 mTorr |
rf power (Gd) | 20 W |
rf power (SiO2) | 100 W |
RTA | 300 °C |
Gas flow (Ar) | 10 sccm |
Gas flow (O2) | 8 sccm |
Current compliance | 10 mA, 15 mA, 20 mA |
Working pressure | 20 mTorr |
rf power (Gd) | 20 W |
rf power (SiO2) | 100 W |
RTA | 300 °C |
Gas flow (Ar) | 10 sccm |
Gas flow (O2) | 8 sccm |
Current compliance | 10 mA |
Working pressure | 20 mTorr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-H.; Cheng, C.-M.; Wang, N.-F.; Zhou, J.-C.; Chen, M.-L. Bipolar Switching Properties of GdOx:SiO2 Thin Film Resistive Random Access Memory Using Co-Sputtering Technology. Crystals 2023, 13, 156. https://doi.org/10.3390/cryst13020156
Chen K-H, Cheng C-M, Wang N-F, Zhou J-C, Chen M-L. Bipolar Switching Properties of GdOx:SiO2 Thin Film Resistive Random Access Memory Using Co-Sputtering Technology. Crystals. 2023; 13(2):156. https://doi.org/10.3390/cryst13020156
Chicago/Turabian StyleChen, Kai-Huang, Chien-Min Cheng, Na-Fu Wang, Jia-Cheng Zhou, and Mei-Li Chen. 2023. "Bipolar Switching Properties of GdOx:SiO2 Thin Film Resistive Random Access Memory Using Co-Sputtering Technology" Crystals 13, no. 2: 156. https://doi.org/10.3390/cryst13020156
APA StyleChen, K.-H., Cheng, C.-M., Wang, N.-F., Zhou, J.-C., & Chen, M.-L. (2023). Bipolar Switching Properties of GdOx:SiO2 Thin Film Resistive Random Access Memory Using Co-Sputtering Technology. Crystals, 13(2), 156. https://doi.org/10.3390/cryst13020156