The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Co-Crystallization Experiments
2.3. Single Crystal X-ray Diffraction (SCXRD)
2.4. Powder X-ray Diffraction (PXRD)
2.5. Thermal Analysis (DSC)
2.6. Thermogravimetric Analysis (TGA)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desiraju, G.R. Crystal Engineering: From Molecule to Crystal. J. Am. Chem. Soc. 2013, 135, 9952–9967. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J. Molecular crystals—Pinching polymorphs. Nat. Mater. 2005, 4, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Bond, A.D. Polymorphism in molecular crystals. Curr. Opin. Solid State Mater. Sci. 2009, 13, 91–97. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: New York, NY, USA, 2002; p. 14. [Google Scholar]
- Bernstein, J.; Davey, R.J.; Henck, J.O. Concomitant polymorphs. Angew. Chem. Int. Ed. 1999, 38, 3440–3461. [Google Scholar] [CrossRef]
- Takale, B.S.; Kong, F.-Y.; Thakore, R.R. Recent Applications of Pd-Catalyzed Suzuki–Miyaura and Buchwald–Hartwig Couplings in Pharmaceutical Process Chemistry. Organics 2022, 3, 1–21. [Google Scholar] [CrossRef]
- Oka, N.; Yamada, T.; Sajiki, H.; Akai, S.; Ikawa, T. Aryl Boronic Esters Are Stable on Silica Gel and Reactive under Suzuki–Miyaura Coupling Conditions. Org. Lett. 2022, 24, 3510–3514. [Google Scholar] [CrossRef]
- Gosecki, M.; Gosecka, M. Boronic acid esters and anhydrates as dynamic cross-links in vitrimers. Polymers 2022, 14, 842. [Google Scholar] [CrossRef]
- Vancoillie, G.; Hoogenboom, R. Synthesis and polymerization of boronic acid containing monomers. Polym. Chem. 2016, 7, 5484–5495. [Google Scholar] [CrossRef]
- Kubo, Y.; Nishiyabu, R.; James, T.D. Hierarchical supramolecules and organization using boronic acid building blocks. Chem. Commun. 2015, 51, 2005–2020. [Google Scholar] [CrossRef]
- Varughese, S.; Azim, Y.; Desiraju, G.R. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring. J. Pharm. Sci. 2010, 99, 3743–3753. [Google Scholar] [CrossRef]
- Georgiou, I.; Kervyn, S.; Rossignon, A.; De Leo, F.; Wouters, J.; Bruylants, G.; Bonifazi, D. Versatile self-adapting boronic acids for H-bond recognition: From discrete to polymeric supramolecules. J. Am. Chem. Soc. 2017, 139, 2710–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, T.D.; Phillips, M.D.; Shinkai, S. Boronic Acids in Saccharide Recognition; Royal Society of Chemistry: Cambridge, UK, 2006. [Google Scholar]
- Valdes-García, J.; Zamora-Moreno, J.; Salomón-Flores, M.K.; Martínez-Otero, D.; Barroso-Flores, J.; Yatsimirsky, A.K.; Bazany-Rodríguez, I.J.; Dorazco-González, A. Fluorescence Sensing of Monosaccharides by Bis-boronic Acids Derived from Quinolinium Dicarboxamides: Structural and Spectroscopic Studies. J. Org. Chem. 2023, 88, 2174–2189. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, W.; Wen, T.; Miao, H.; Hu, W.; Liu, H.; Lei, M.; Zhu, Y. Design and discovery of novel dipeptide boronic acid ester proteasome inhibitors, an oral slowly-released prodrug for the treatment of multiple myeloma. Eur. J. Med. Chem. 2023, 250, 115187. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, R.T.; Ravenscroft, A.C.; Knowlden, S.W.; Akhmedov, N.G.; Dolinar, B.S.; Popp, B.V. Synthesis of Novel Multifunctional bora-Ibuprofen Derivatives. Inorganics 2023, 11, 70. [Google Scholar] [CrossRef]
- Moumbock, A.F.; Tran, H.T.; Lamy, E.; Günther, S. BC-11 is a covalent TMPRSS2 fragment inhibitor that impedes SARS-CoV-2 host cell entry. Arch. Pharm. 2023, 356, 2200371. [Google Scholar] [CrossRef]
- Farfán-García, E.D.; Kilic, A.; García-Machorro, J.; Cuevas-Galindo, M.E.; Rubio-Velazquez, B.A.; García-Coronel, I.H.; Estevez-Fregoso, E.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. In Viral, Parasitic, Bacterial, and Fungal Infections; Elsevier: Amsterdam, The Netherlands, 2023; pp. 733–754. [Google Scholar]
- Hoenke, S.; Brandes, B.; Csuk, R. Non-cytotoxic aza-BODIPY triterpene conjugates to target the endoplasmic reticulum. Eur. J. Med. Chem. Rep. 2023, 7, 100099. [Google Scholar] [CrossRef]
- Pedireddi, V.R.; Seethalekshmi, N. Boronic acids in the design and synthesis of supramolecular assemblies. Tetrahedron Lett. 2004, 45, 1903–1906. [Google Scholar] [CrossRef]
- Shimpi, M.R.; SeethaLekshmi, N.; Pedireddi, V.R. Supramolecular architecture in some 4-halophenylboronic acids. Cryst. Growth Des. 2007, 7, 1958–1963. [Google Scholar] [CrossRef]
- Varughese, S.; Sinha, S.B.; Desiraju, G.R. Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design. Sci. China Chem. 2011, 54, 1909–1919. [Google Scholar] [CrossRef]
- Stazi, M.; Lehmann, S.; Sakib, M.S.; Pena-Centeno, T.; Büschgens, L.; Fischer, A.; Weggen, S.; Wirths, O. Long-term caffeine treatment of Alzheimer mouse models ameliorates behavioural deficits and neuron loss and promotes cellular and molecular markers of neurogenesis. Cell. Mol. Life Sci. 2022, 79, 55. [Google Scholar] [CrossRef]
- Cao, C.; Cirrito, J.R.; Lin, X.; Wang, L.; Verges, D.K.; Dickson, A.; Mamcarz, M.; Zhang, C.; Mori, T.; Arendash, G.W. Caffeine suppresses amyloid-β levels in plasma and brain of Alzheimer’s disease transgenic mice. J. Alzheimer’s Dis. 2009, 17, 681–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendash, G.W.; Cao, C. Caffeine and coffee as therapeutics against Alzheimer’s disease. J. Alzheimer’s Dis. 2010, 20, S117–S126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusco, L.I. Cognitive Decline and Treatment of Alzheimer’s Disease. In Neuropsychiatric Disorders; Springer: Berlin/Heidelberg, Germany, 2010; pp. 213–226. [Google Scholar]
- Rani, A.; Sodhi, R.K.; Kaur, A. Protective effect of a calcium channel blocker “diltiazem” on aluminum chloride-induced dementia in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Lukiw, W.J.; Cui, J.G.; Li, Y.; Bhattacharjee, P.S.; Corkern, M.; Clement, C.; Kammerman, E.M.; Ball, M.; Zhao, Y.; Hill, J. Acyclovir and Aβ42 peptide attenuates HSV-1-induced miRNA-146a levels in human brain cells. Neuroreport 2010, 21, 922. [Google Scholar] [CrossRef] [Green Version]
- Hui, Z.; Zhijun, Y.; Yushan, Y.; Liping, C.; Yiying, Z.; Difan, Z.; Chunglit, C.T.; Wei, C. The combination of acyclovir and dexamethasone protects against Alzheimer’s disease-related cognitive impairments in mice. Psychopharmacology 2020, 237, 1851–1860. [Google Scholar] [CrossRef]
- Pyles, R.B. The association of herpes simplex virus and Alzheimer’s disease: A potential synthesis of genetic and environmental factors. Herpes 2001, 8, 64–68. [Google Scholar]
- Ren, J.; Hu, H.; Wang, S.; He, Y.; Ji, Y.; Chen, Y.; Wang, K.; Zhang, H.; Zhao, Y.; Dai, F. Prevent Drug Leakage via the Boronic Acid Glucose-Insensitive Micelle for Alzheimer’s Disease Combination Treatment. ACS Appl. Mater. Interfaces 2022, 14, 20. [Google Scholar] [CrossRef]
- Maiti, P.; Manna, J.; Burch, Z.N.; Flaherty, D.B.; Larkin, J.D.; Dunbar, G.L. Ameliorative Properties of Boronic Compounds in In Vitro and In Vivo Models of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 6664. [Google Scholar] [CrossRef]
- Penland, J.G. The importance of boron nutrition for brain and psychological function. Biol. Trace Elem. Res. 1998, 66, 299–317. [Google Scholar] [CrossRef]
- Lu, C.-J.; Hu, J.; Wang, Z.; Xie, S.; Pan, T.; Huang, L.; Li, X. Discovery of boron-containing compounds as Aβ aggregation inhibitors and antioxidants for the treatment of Alzheimer’s disease. MedChemComm 2018, 9, 1862–1870. [Google Scholar] [CrossRef]
- CrysAlis PRO; Agilent Technologies, UK Ltd.: Yarnton, UK, 2011.
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Faruggia, L. ORTEP-3 V2. 02 for Windows; University of Glasgow: Glasgow, UK, 2008. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Hernandez-Paredes, J.; Olvera-Tapia, A.L.; Arenas-Garcia, J.I.; Hopfl, H.; Morales-Rojas, H.; Herrera-Ruiz, D.; Gonzaga-Morales, A.I.; Rodriguez-Fragoso, L. On molecular complexes derived from amino acids and nicotinamides in combination with boronic acids. Crystengcomm 2015, 17, 5166–5186. [Google Scholar] [CrossRef]
- Bhuvanesh, N.S.P.; Reibenspies, J.H. 4-Bromophenylboronic acid ethanol 0.04-solvate. Acta Crystallogr. Sect. E 2005, 61, o362–o364. [Google Scholar] [CrossRef]
- TalwelkarShimpi, M.; Öberg, S.; Giri, L.; Pedireddi, V.R. Experimental and theoretical studies of molecular complexes of theophylline with some phenylboronic acids. RSC Adv. 2016, 6, 43060–43068. [Google Scholar] [CrossRef]
- Chai, Z.; Wang, C.; Wang, J.; Liu, F.; Xie, Y.; Zhang, Y.-Z.; Li, J.-R.; Li, Q.; Li, Z. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: The relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chem. Sci. 2017, 8, 8336–8344. [Google Scholar] [CrossRef] [Green Version]
- SeethaLekshmi, S.; Varughese, S.; Giri, L.; Pedireddi, V.R. Molecular Complexes of 4-Halophenylboronic Acids: A Systematic Exploration of Isostructurality and Structural Landscape. Cryst. Growth Des. 2014, 14, 4143–4154. [Google Scholar] [CrossRef]
- Capillas, C.; Perez-Mato, J.M.; Aroyo, M.I. Maximal symmetry transition paths for reconstructive phase transitions. J. Phys. Condens. Matter 2007, 19, 275203. [Google Scholar] [CrossRef]
- Bergerhoff, G.; Berndt, M.; Brandenburg, K.; Degen, T. Concerning inorganic crystal structure types. Acta Crystallogr. Sect. B 1999, 55, 147–156. [Google Scholar] [CrossRef] [PubMed]
- de la Flor, G.; Orobengoa, D.; Tasci, E.; Perez-Mato, J.M.; Aroyo, M.I. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653–664. [Google Scholar] [CrossRef]
- Hernández-Negrete, O.; Sotelo-Mundo, R.R.; Esparza-Ponce, H.E.; Encinas-Romero, M.A.; Hernández-Paredes, J. New hydrate cocrystal of l-proline with 4-acetylphenylboronic acid obtained via mechanochemistry and solvent evaporation: An experimental and theoretical study. J. Solid State Chem. 2022, 313, 123282. [Google Scholar] [CrossRef]
- Rodríguez-Cuamatzi, P.; Arillo-Flores, O.I.; Bernal-Uruchurtu, M.I.; Höpfl, H. Theoretical and experimental evaluation of homo-and heterodimeric hydrogen-bonded motifs containing boronic acids, carboxylic acids, and carboxylate anions: Application for the generation of highly stable hydrogen-bonded supramolecular systems. Cryst. Growth Des. 2005, 5, 167–175. [Google Scholar] [CrossRef]
- Cartwright, A.C. The British Pharmacopoeia, 1864 to 2014: Medicines, International Standards, and the State; Ashgate: Surrey, UK; Burlington, VT, USA, 2015; p. 17. [Google Scholar]
- Ramana, C.V.; Goriya, Y.; Durugkar, K.A.; Chatterjee, S.; Krishnaswamy, S.; Gonnade, R.G. Evaluation of viability of halogen[three dots, centered]O2N interactions: Insight from crystal packing in a series of isomeric halo and nitro substituted triaryl compounds with modular positioning of halogen and NO2 groups. Crystengcomm 2013, 15, 5283–5300. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
Compound | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
4ClB:PRO | 4ClB:NIT | 4ClB:ACL | 4ClB:TEO | 4ClB:CAF | |
CCDC number | 2236720 | 2236721 | 2236722 | 2236723 | 2236724 |
Formula | C11H15BO4ClN | C12H12BClN4O6 | C14H17BClN5O5 | C13H14BClN4O4 | C40H44B4Cl4N8O12 |
Formula weight | 271.50 | 354.52 | 381.58 | 336.54 | 1013.87 |
Temperature/K | 290.0 (2) | 290.0 | 290 (2) | 290 (2) | 290 (2) |
Crystal system | monoclinic | triclinic | monoclinic | triclinic | triclinic |
Space group | P21 | P-1 | P21 | P-1 | P-1 |
a/Å | 6.6059 (7) | 6.8833 (5) | 4.0007 (4) | 7.5153 (6) | 7.2639 (4) |
b/Å | 7.7320 (8) | 7.2705 (5) | 11.0858 (8) | 9.4796 (13) | 17.9480 (14) |
c/Å | 13.0643 (13) | 17.7274 (9) | 19.5865 (13) | 11.9034 (8) | 20.1908 (14) |
α/° | 90 | 93.911 (5) | 90 | 85.806 (8) | 115.949 (7) |
β/° | 102.532 (11) | 96.519 (5) | 95.837 (7) | 80.073 (7) | 94.592 (5) |
γ/° | 90 | 117.499 (7) | 90 | 68.837 (12) | 93.700 (5) |
Volume/Å3 | 651.38(12) | 774.49 (10) | 864.17 (12) | 778.93 (15) | 2344.7 (3) |
Z | 2 | 2 | 2 | 2 | 2 |
ρcalcg/cm3 | 1.384 | 1.520 | 1.466 | 1.435 | 1.436 |
μ/mm−1 | 0.298 | 0.285 | 0.258 | 0.270 | 0.322 |
F(000) | 284.0 | 364.0 | 396.0 | 348.0 | 1048.0 |
Crystal size/mm3 | 0.25 × 0.24 × 0.2 | 0.24 × 0.2 × 0.16 | 0.35 × 0.15 × 0.15 | 0.35 × 0.3 × 0.15 | 0.35 × 0.2 × 0.15 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 6.39 to 62.25 | 6.378 to 61.844 | 6.272 to 57.708 | 5.738 to 62.162 | 5.662 to 58.416 |
Index ranges | −9 ≤ h ≤ 6, −11 ≤ k ≤ 7, −18 ≤ l ≤ 18 | −9 ≤ h ≤ 9, −10 ≤ k ≤ 9, −25 ≤ l ≤ 23 | −4 ≤ h ≤ 5, −12 ≤ k ≤ 13, −25 ≤ l ≤ 25 | −9 ≤ h ≤ 10, −13 ≤ k ≤ 12, −16 ≤ l ≤ 17 | −9 ≤ h ≤ 8, −21 ≤ k ≤ 24, −27 ≤ l ≤ 24 |
Reflections collected | 4160 | 8671 | 4180 | 8481 | 18,637 |
Independent reflections/Rfactors | 2700 Rint = 0.0310, Rsigma = 0.0657 | 4307 Rint = 0.0217, Rsigma = 0.0386 | 2899 Rint = 0.1390, Rsigma = 0.1157 | 4415 Rint = 0.0287, Rsigma = 0.0432 | 10,462 Rint = 0.0799, Rsigma = 0.1092 |
Data/restraints/parameters | 2700/1/163 | 4307/0/219 | 2899/1/242 | 4415/0/212 | 10,462/0/639 |
GOF on F2 | 0.952 | 1.037 | 1.053 | 1.061 | 1.098 |
Final R indexes [I> = 2σ (I)] | R1 = 0.0550, wR2 = 0.1233 | R1 = 0.0519, wR2 = 0.1094 | R1 = 0.0752, wR2 = 0.1803 | R1 = 0.0599, wR2 = 0.1682 | R1 = 0.0953, wR2 = 0.2377 |
Final R indexes [all data] | R1 = 0.1223, wR2 = 0.1551 | R1 = 0.0898, wR2 = 0.1293 | R1 = 0.0927, wR2 = 0.2027 | R1 = 0.1009, wR2 = 0.2029 | R1 = 0.1527, wR2 = 0.2901 |
Largest diff. peak/hole/e Å−3 | 0.17/−0.16 | 0.28/−0.24 | 0.28/−0.39 | 0.30/−0.30 | 0.88/−0.58 |
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D…A)/Å | D-H-A/° |
---|---|---|---|---|---|---|
O1 | H1 | O3 1 | 0.94 | 1.77 | 2.672 (5) | 159.7 |
O2 | H2 | O3 1 | 0.98 | 2.64 | 3.460 (5) | 142.0 |
O2 | H2 | O4 1 | 0.98 | 1.66 | 2.589 (5) | 158.0 |
N1 | H1A | O1 2 | 1.03 | 2.20 | 3.050 (5) | 138.2 |
N1 | H1A | O4 | 1.03 | 2.03 | 2.616 (5) | 113.4 |
N1 | H1B | O2 3 | 0.89 | 2.29 | 2.924 (5) | 127.6 |
N1 | H1B | O3 4 | 0.89 | 2.47 | 3.205 (5) | 140.8 |
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
---|---|---|---|---|---|---|
O2 | H2 | O14 1 | 0.82 | 2.01 | 2.7821 (19) | 155.7 |
O1 | H1 | O2 1 | 0.82 | 1.99 | 2.8019 (19) | 170.8 |
N3 | H3 | O1 | 0.86 | 2.55 | 3.244 (2) | 139.0 |
N3 | H3 | O14 2 | 0.86 | 2.39 | 3.030 (2) | 131.2 |
N3 | H3 | O2 | 0.86 | 2.838 | 3.351 (3) | 120.1 |
N4 | H4A | O14 3 | 0.86 | 2.05 | 2.911 (2) | 174.7 |
Cl1 | - | O12 | - | 3.165 | - | - |
D | H | A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
---|---|---|---|---|---|---|
O42 | H42 | O62 1 | 0.82 | 2.07 | 2.826 (5) | 153.9 |
O21 | H21 | N53 2 | 0.82 | 2.02 | 2.796 (5) | 157.4 |
O11 | H11 | O12 3 | 0.82 | 1.95 | 2.754 (5) | 167.2 |
O32 | H32 | O51 4 | 0.82 | 1.96 | 2.729 (4) | 154.8 |
C66 | H66B | O41 5 | 0.96 | 2.58 | 3.510 (6) | 163.8 |
C58 | H58B | Cl31 6 | 0.96 | 2.98 | 3.910 (5) | 164.3 |
C58 | H58C | O41 7 | 0.96 | 2.60 | 3.436 (6) | 145.8 |
C68 | H68A | O31 8 | 0.96 | 2.51 | 3.352 (8) | 146.6 |
C68 | H68B | Cl41 7 | 0.96 | 2.88 | 3.494 (6) | 122.8 |
C68 | H68C | O61 | 0.96 | 2.63 | 3.123 (9) | 112.3 |
O41 | H41 | O61 5 | 0.75 (4) | 2.11 (4) | 2.833 (5) | 164 (4) |
O22 | H22 | O21 9 | 0.74 (5) | 2.09 (5) | 2.829 (5) | 171 (5) |
O31 | H31 | O52 8 | 1.08 (6) | 1.75 (6) | 2.814 (5) | 164 (5) |
O12 | H12 | N63 | 0.89 (6) | 2.01 (6) | 2.793 (5) | 146 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyulgerov, V.; Sbirkova-Dimitrova, H.; Iliev, K.; Shivachev, B. The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions. Crystals 2023, 13, 468. https://doi.org/10.3390/cryst13030468
Dyulgerov V, Sbirkova-Dimitrova H, Iliev K, Shivachev B. The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions. Crystals. 2023; 13(3):468. https://doi.org/10.3390/cryst13030468
Chicago/Turabian StyleDyulgerov, Ventsislav, Hristina Sbirkova-Dimitrova, Kostadin Iliev, and Boris Shivachev. 2023. "The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions" Crystals 13, no. 3: 468. https://doi.org/10.3390/cryst13030468
APA StyleDyulgerov, V., Sbirkova-Dimitrova, H., Iliev, K., & Shivachev, B. (2023). The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions. Crystals, 13(3), 468. https://doi.org/10.3390/cryst13030468