Physico-Chemical Characterization, DFT Modeling and Biological Activities of a New Zn (II) Complex Containing Melamine as a Template
Abstract
:1. Introduction
2. Experimental Analysis
2.1. Synthesis of (C3H7N6)2[ZnCl4]·H2O
2.2. Crystal Data and Structural Determination
2.3. Powder X-ray Diffraction
2.4. Hirshfeld Surface Analysis
2.5. Spectroscopic Characterizations
2.6. Computational Details
2.7. Antimicrobial Activity
2.7.1. Microbial Strains
2.7.2. Agar Diffusion Method
2.7.3. Minimum Inhibitory Concentration (MIC) Determination
2.8. Enzymatic Inhibition Assays
2.8.1. Lipase Inhibition
2.8.2. Phospholipase A2 Inhibition
3. Results and Discussion
3.1. Crystal Structure
3.2. Hirshfeld Surface Analysis
3.3. X-ray Powder Analysis
3.4. The FT-IR and Raman Spectroscopy
3.5. Atomic Charge
3.6. Natural Population Analysis (NPA)
3.7. Topological Analysis
3.8. Linear and Nonlinear Optical Properties
3.8.1. UV-Visible Absorption Spectrum
3.8.2. Photoluminescence Behavior
3.8.3. Nonlinear Optical Parameters
3.9. Antimicrobial Activity
3.10. Lipase and Phospholipase A2 Inhibition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Msalmi, R.; Elleuch, S.; Hamdi, B.; Abd El-Fattah, W.; Ben Hamadi, N.; Naïli, H. Organically tuned white-light emission from two zero-dimensional Cd-based hybrids. RSC Adv. 2022, 12, 10431–10442. [Google Scholar] [CrossRef] [PubMed]
- Msalmi, R.; Elleuch, S.; Hamdi, B.; Zouari, R.; Naïli, H. Synthesis, DFT calculations, intermolecular interactions and third order nonlinear optical properties of new organoammoniumtetrabromocadmate (II): (C5H6N2Cl)2[CdBr4]·H2O. J. Mol. Struct. 2020, 1222, 128–853. [Google Scholar] [CrossRef]
- Msalmi, R.; Elleuch, S.; Hamdi, B.; Radicchi, E.; Tozri, A.; Naïli, H.; Berber, M.R. Tunable broad-band white-light emission in two-dimensional (110)-oriented lead bromide perovskite (C3H8N6)[PbBr4]: Optical, electronic and luminescence properties. New J. Chem. 2021, 45, 20850–20859. [Google Scholar] [CrossRef]
- Ben Hmida, W.; Jellali, A.; Abid, H.; Hamdi, B.; Naïli, H.; Zouari, R. Synthesis, crystal structure, vibrational studies, optical properties and DFT calculation of a new luminescentmaterial based Cu (II). J. Mol. Struct. 2019, 1184, 604–614. [Google Scholar] [CrossRef]
- Hfidhi, N.; Kammoun, O.; Bataille, T.; Naïli, H. Structure Evolution and Thermal Decomposition of Supramolecular and Lamellar Hybrid Sulfates Templated by 4-Aminopyridinium. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4165–4176. [Google Scholar] [CrossRef]
- Tlili, H.; Walha, S.; Elleuch, S.; Ali, B.F.; Awad, H.M.; Myllyperkiö, P.; Konu, J.; Naïli, H. Electronic studies, biological activities and nonlinear optical properties of a new non-centrosymmetric piperazinediiumtetrabromidozincate(II). J. Iran. Chem. Soc. 2022, 19, 763–774. [Google Scholar] [CrossRef]
- Hassan, D.B.; Naïli, H.; Rekik, W. Spectroscopic, Structural and Thermal Properties of Three New Metal Nitrates Templated by DABCO: (C6H14N2)[MII(H2O)6](NO3)4 with MII: Mn, Ni and Zn. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2480–2488. [Google Scholar] [CrossRef]
- Moghdad, I.; Mbarek, A.; Costantino, F.; Nazzareni, S.; Naïli, H. Hybrid MII-organic-diphosphate hydrates (MII = Mn, Ni and Zn): Structural characterization, hirshfeld surface analysis and antitumoral activity. J. Mol. Struct. 2020, 1202, 127326. [Google Scholar] [CrossRef]
- Abid Derbel, M.; François, M.; Naïli, H.; Rekik, W. Phase transition from disordered high-temperature to twinned low-temperature structure of tris(ethylenediamine)zinc(II) selenate. Mon.-Chem. Mon. 2019, 150, 1793–1800. [Google Scholar] [CrossRef]
- Jlassi, R.; Khalladi, A.; Naïli, H.; Rüffer, T.; Lang, H.; Rekik, W. Synthesis, crystal structure and catalytic properties in the diastereoselective nitroaldol (Henry) reaction of new zinc(II) and cadmium(II) compounds. Polyhedron 2019, 158, 71–75. [Google Scholar] [CrossRef]
- Maatar Ben Salah, A.; Belghith Fendri, L.; Bataille, T.; Herrera, R.P.; Naïli, H. Synthesis, structural determination and antimicrobial evaluation of two novel CoII and ZnII halogenometallates as efficient catalysts for the acetalization reaction of aldehydes. Chem. Cent. J. 2018, 12, 24. [Google Scholar] [CrossRef]
- Saïd, S.; Naïli, H.; Bataille, T.; Herrera, R.P. Crystallisation, thermal analysis and acetal protection activity of new layered Zn(II) hybrid polymorphs. CrystEngComm 2016, 18, 5365–5374. [Google Scholar] [CrossRef]
- Dgachi, S.; Ben Salah, A.M.; Turnbull, M.M.; Bataille, T.; Naïli, H. Investigations on (C6H9N2)2[MIIBr4] halogenometallate complexes with MII = Co, Cu and Zn: Crystal structure, thermal behavior and magnetic properties. J. Alloys Compd. 2017, 726, 315. [Google Scholar] [CrossRef]
- Mhadhbi, N.; Dgachi, S.; Belgacem, S.; Ben Ahmed, A.; Henry, N.; Loiseau, T.; Nasr, S.; Badraoui, R.; Naïli, H. Design, theoretical study, druggability, pharmacokinetics and properties evolution of a new organo-bromocadmate compound as prospective anticancer agent. J. Mol. Struct. 2023, 1274, 134439. [Google Scholar] [CrossRef]
- Sakka, A.; Jellali, A.; Hamdi, B.; Abdelbaky, M.S.M.; Naïli, H.; Garcia-Granda, S.; Zouari, R. Structure, spectroscopic measurement, thermal studies and optical properties of a new non-centrosymmetric hybrid compound. J. Mol. Struct. 2019, 1198, 126867. [Google Scholar] [CrossRef]
- Hamdi, B.; Jellali, A.; Karâa, N.; Ghalla, H. Synthesis, characterization, DFT calculations, electric and dielectric properties of (C6H10(NH3)2) CdCl4 H2O organic-inorganic hybrid compound. J. Mol. Struct. 2019, 1198, 126887. [Google Scholar] [CrossRef]
- Karâa, N.; Hamdi, B.; Ben Salah, A.; Zouari, R. Synthesis, infra-red, MAS-NMR characterization, structural study and electrical properties of the new compound [C5H6ClN2]2Cd3Cl8. J. Mol. Struct. 2012, 1013, 168–176. [Google Scholar] [CrossRef]
- Xixia, L.; Nengduo, Z.; Baoshan, T.; Mengsha, L.; Yong-Wei, Z.; Zhi Gen, Y.; Hao, G. Highly Stable New Organic–Inorganic Hybrid 3D Perovskite CH3NH3PdI3 and 2D Perovskite(CH3NH3)3Pd2I7: DFT Analysis, Synthesis, Structure, Transition Behavior, and Physical Properties. J. Phys. Chem. Lett. 2018, 19, 5862–5872. [Google Scholar]
- Hellmich, H.L.; Frederickson, C.J.; DeWitt, D.S.; Saban, R.; Parsley, M.O.; Stephenson, R.; Velasco, M.; Uchida, T.; Shimamura, M.; Prough, D.S. Protective effects of zinc chelation in traumatic brain injury correlate with upregulation of neuroprotective genes in rat brain. Neurosci. Lett. 2004, 355, 221–225. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Chihaoui, N.; Hamdi, B.; Zouari, R. Structural elucidation, theoretical investigation using DFT calculations, thermal and dielectric analyses of new zinc(II) based inorganic–organic hybrid. ChineseChemicalLetters 2017, 28, 642–650. [Google Scholar] [CrossRef]
- Grabner, S.; Modec, B. Zn(II) Curcuminate Complexes with 2,2′-bipyridine and Carboxylates. Molecules 2019, 24, 2540. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama, H.; Abiko, T.; Ito, M.; Mitsuhashi, R.; Mikuriya, M.; Waki, K. Conformational analysis of an octahedral zinc(II) complex with six dimethylsulfoxide. Polyhedron 2016, 119, 512–516. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Cryst. 2015, A71, 59–75. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Farrugia, L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30, 565. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.V.; Wood, P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Bergerhoff, G.; Berndt, M.; Brandenburg, K. Phase Identification in a Scanning Electron Microscope Using Backscattered Electron Kikuchi Patterns. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 221. [Google Scholar] [CrossRef]
- Boultif, A.; Louer, D. Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer; Version 3.0; University of Western Australia: Crawley, Australia, 2012. [Google Scholar]
- Westrip, S.P. Software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 2010, 43, 920–925. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J.; Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. Cryst. Eng. Comm 2008, 10, 377–388. [Google Scholar] [CrossRef]
- Seth, S.K.; Sarkar, D.; Kar, T. Use of π–π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: Crystal structures and Hirshfeld surface analyses. Cryst. Eng. Comm 2011, 13, 4528–4535. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. J. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef]
- Pourayoubi, M.; ShoghpourBayraq, S.; Tarahhomi, A.; Necas, M.; Fejfarová, K.; Dusek, M. Hirshfeld surface analysis of new organotin(IV)-phosphoramidecomplexes. J. Organomet. Chem. 2014, 751, 508–518. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. 2004, 60, 627–668. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, A.H.; et al. GAUSSIAN 09; Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView; Version 5; Semi-chem Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- O’Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Biegler-Konig, F.; Schonbohm, J.; Bayles, D. AIM2000-A Program to Analyze and Visualize Atoms in Molecules. J. Comput. Chem. 2001, 22, 545–559. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33, 580–592. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Vanden Berghe, D. Screening methods for antibacterial and antiviral agents from higher plants. Methods Plant Biochem. 1991, 6, 47–69. [Google Scholar]
- Melo, M.; Feitosa, J.; Freitas, A.; De Paula, R. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002, 49, 491–498. [Google Scholar] [CrossRef]
- Lengsfeld, H.; Beaumier-Gallon, G.; Chahinian, H.; De Caro, A.; Verger, R.; Laugier, R.; Carrière, F. Physiology of gastrointestinal lipolysis and therapeutical use of lipases and digestive lipase inhibitors. Lipases Phospholipases Drug Dev. Biochem. Mol. Pharmacol. 2004, 10, 195–229. [Google Scholar]
- Krayem, N.; Parsiegla, G.; Gaussier, H.; Louati, H.; Jallouli, R.; Mansuelle, P.; Carrière, F.; Gargouri, Y. Functional characterization and FTIR-based 3D modeling of full length and truncated forms of Scorpio maurus venom phospholipase A2. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 1247–1261. [Google Scholar] [CrossRef]
- Chihaoui, N.; Hamdi, B.; Zouari, R. Structural study, spectroscopic analysis and dielectric proprieties of new hybrid organic-inorganic compound. J. Mol. Struct. 2017, 1147, 48–55. [Google Scholar] [CrossRef]
- Baur, H.W. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. 1974, 30, 1195–1215. [Google Scholar] [CrossRef]
- Mesbeh, R.; Hamdi, B.; Zouari, R. Crystal structure, thermal studies, Hirshfeld surface analysis, vibrational and DFT investigation of organic-inorganic hybrid compound [C9H6NOBr2]2CuBr4·2H2O. J. Mol. Struct. 2016, 1125, 217–226. [Google Scholar] [CrossRef]
- Jellali, A.; Hamdi, B.; Samet, A.; Zouari, R. Experimental, theoretical, characterization and optical investigation of a new hybrid material (8–HQ)2[FeCl4]·Cl. J. Mol. Struct. 2018, 1171, 305–314. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ren, J. Gas-phase acid-base properties of melamine and cyanuric acid. J. Am. Soc. Mass Spectrom. 2010, 21, 1720–1729. [Google Scholar] [CrossRef]
- Mesbeh, R.; Hamdi, B.; Zouari, R. Elaboration, structural, spectroscopy, DSC investigations and Hirshfeld surface analysis of a one-dimensional self-assembled organic-inorganic hybrid compound. J. Mol. Struct. 2017, 1128, 205–214. [Google Scholar] [CrossRef]
- Mesbeh, R.; Hamdi, B.; Zouari, R. Synthesis, crystal structure, physicochemical characterization, and dielectric properties of a new organic chloride salt, (C3H7N6)Cl•0.5H2O. Ionics 2019, 25, 6147–6160. [Google Scholar] [CrossRef]
- Janczak, J. Supramolecular solid-state architecture formed by co-crystallization of melamine and phenylacetic acid. J. Mol. Struct. 2020, 1207, 127833. [Google Scholar] [CrossRef]
- Mesbeh, R.; Hamdi, B.; Zouari, R. (H2pdcCuBr2)2∙2(MH+)∙2Br− (M = Melamine, H2pdc = Pyridine-2,6-Dicarboxylic Acid): Crystal Structure, Hirshfeld Surface Analysis, Vibrational and Thermal Studies. J. Inorg. Organomet. Polym. Mater. 2016, 26, 744–755. [Google Scholar] [CrossRef]
- Paz Fermandez-Liences, M.; Navarro, A.; Lopez-Gonzalez, J.J.; Fernandez-Gomez, M.; Tomkinson, J.; Kearley, G.J. Measurement and ab initio modeling of the inelastic neutron scattering of solid melamine: Evidence of the anisotropy in the external modes spectrum. Chem. Phys. 2001, 266, 1–17. [Google Scholar] [CrossRef]
- Arjunan, V.; Kalaivani, M.; Marchewka, M.K.; Mohan, S. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate. J. Mol. Struct. 2013, 1045, 160–170. [Google Scholar] [CrossRef]
- Tanak, H.; Marchewka, M.K. FT-IR, FT-Raman, and DFT computational studies of melaminium nitrate molecular–ionic crystal. J. Mol. Struct. 2013, 1034, 363–373. [Google Scholar] [CrossRef]
- Hamdi, B.; Zouari, R.; Ben Salah, A. Synthesis, crystal structure, hirshfeld surface analyses and physical properties of a new hybrid compound: [C3N6H8]2PbCl5.Cl. Superlattices Microstruct. 2018, 123, 97–110. [Google Scholar] [CrossRef]
- Rayes, A.; Mezzadri, F.; Issaoui, N.; Ayed, B.; Calestani, G. Synthesis, physico-chemical studies, non-linear optical properties and DFT calculations of a new non-centrosymmetric compound: (3-ammoniumpyridinium)tetrachloridozincate (II). J. Mol. Struct. 2019, 1184, 524–531. [Google Scholar] [CrossRef]
- Karoui, K.; Ben Rhaiem, A.; Guidara, K. Electrical characterization of the [N(CH3)4][N(C2H5)4]ZnCl4 compound. Ionics 2011, 17, 517–525. [Google Scholar] [CrossRef]
- Chihaoui, N.; Hamdi, B.; Dammak, T.; Zouari, R. Molecular structure, experimental and theoretical spectroscopic characterization and non-linear optical properties studies of a new non-centrosymmetric hybrid material. J. Mol. Struct. 2016, 1123, 144–152. [Google Scholar] [CrossRef]
- Elleuch, N.; BenAhmed, A.; Feki, H.; Abid, Y.; Minot, C. Vibrational spectra, optical properties, NBO and HOMO–LUMO analysis of L-Phenylalanine L-Phenylalaninium Perchlorate: DFT calculations. J. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Bond Paths Are Not Chemical Bonds. J. Phys. Chem. A 2009, 113, 10391–10396. [Google Scholar] [CrossRef] [PubMed]
- Rozas, I.; Alkorta, I.; Elguero, J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J. Am. Chem. Soc. 2000, 122, 11154–11161. [Google Scholar] [CrossRef]
- Noureddine, O.; Issaoui, N.; Gatfaoui, S.; Al-Dossary, O.; Marouani, H. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. J. King Saud Univ.–Sci. 2021, 33, 101283. [Google Scholar] [CrossRef]
- Pandey, K.; Shukla, D.V.; Singh, V.; Narayan, V. Structural, IR spectra NBO, TDDFT, AIM calculation, biological activity 5 and docking property of [1,2,4]-triazolo[3,4-b][1,3,4] thiadiazole. Egypt. J. Basic Appl. Sci. 2018, 5, 280–288. [Google Scholar] [CrossRef]
- Ghalla, H.; Issaoui, N.; Bardak, F.; Atac, A. Intermolecular interactions and molecular docking investigations on 4-methoxybenzaldehyde. Comput. Mater. Sci. 2018, 149, 291–300. [Google Scholar] [CrossRef]
- Contreras-García, J.; Calatayud, M.; Piquemal, J.P.; Recio, J.M. Ionic interactions: Comparative topological approach. Comput. Theor. Chem. 2012, 998, 193–201. [Google Scholar] [CrossRef]
- Samet, A.; Ben Ahmed, A.; Mlayah, A.; Boughzala, H.; Hlil, E.K.; Abid, Y. Optical properties and ab initio study on the hybrid organic–inorganic material [(CH3)2NH2]3[BiI6]. J. Mol. Struct. 2010, 977, 72–77. [Google Scholar] [CrossRef]
- Luque, A.; Sertucha, J.; Castillo, O.; Roman, P. Magneto-structural studies and thermal analysis of n-ethylpyridinium (n = 2, 3, 4) tetrabromocuprate(II) complexes. Polyhedron 2002, 21, 19–26. [Google Scholar] [CrossRef]
- Zeyada, H.M.; EL-Nahass, M.M.; Samak, S.A. Effect of γ-ray irradiation on structure formation and optical constants of thermally evaporated rhodamine B thin films. J. Non-Cryst. Sol. 2012, 358, 915–920. [Google Scholar] [CrossRef]
- Karuppasamy, P.; Joseph Daniel, D.; Kim, H.J.; Senthil Pandian, M.; Ramasamy, P. Studies on semi-organic (C8H11NO)2[ZnCl4] single crystal for Nonlinear Optical (NLO) Applications. J. Cryst. Growth 2020, 535, 125528. [Google Scholar] [CrossRef]
- El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; El-Ammari, L.; Saadi, S. A zero-dimensional hybrid organic-inorganic perovskite ZnCl4 based: Synthesis, crystal structure, UV–vis, and electronic properties. J. Cryst. Growth 2017, 472, 76–83. [Google Scholar] [CrossRef]
- Kassou, S.; El-Mrabet, R.; Kaiba, A.; Guionneau, P.; Belaaraj, A. Combined experimental and density functional theory studies of an organic–inorganic hybrid perovskite. Phys. Chem. Chem. Phys. 2016, 18, 9431–9436. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Wang, S.; Liu, X.; Yao, Y.; Peng, Y.; Hong, M.; Luo, J. [(N-AEPz)ZnCl4]Cl: A “Green” Metal Halide Showing Highly Efficient Bluish-White-Light Emission. J. Inorg. Chem. 2020, 59, 3527–3531. [Google Scholar] [CrossRef]
- Gautier, R.; Paris, M.; Massuyeau, F. Hydrogen Bonding and Broad-Band Emission in Hybrid Zinc Halide Phosphors. J. Inorg. Chem. 2020, 59, 2626–2630. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Anusuya, K.; Joseph, J. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula. J. Appl. Surf. Sci. 2017, 420, 963–969. [Google Scholar] [CrossRef]
- Yu, D.; He, J.; Liu, Z.; Xu, B.; Li, D.; Tian, Y. Phase transformation of melamine at high pressure and temperature. J. Mater. Sci. 2008, 43, 689–695. [Google Scholar] [CrossRef]
- Samet, A.; Pilletb, S.; Abid, Y. Sensitizer-free photon up conversion in (HQ)2ZnCl4 and HQCl crystals: Systems involving resonant energy transfer and triplet–triplet annihilation. Phys. Chem. Chem. Phys. 2020, 22, 1575–1582. [Google Scholar] [CrossRef]
- Hartmann, M.; Berditsch, M.; Hawecker, J.; Ardakani, M.F.; Gerthsen, D.; Ulrich, A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 2010, 54, 3132–3142. [Google Scholar] [CrossRef]
- De Morais Junior, W.G.; Kamimura, E.S.; Ribeiro, E.J.; Pessela, B.C.; Cardoso, V.L.; De Resende, M.M. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichumcandidum in soybean molasses by submerged fermentation. Protein Expr. Purif. 2016, 123, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Stehr, F.; Kretschmar, M.; Kröger, C.; Hube, B.; Schäfer, W. Microbiallipasesasvirulencefactors. J. Mol. Catal. B Enzym. 2003, 22, 347–355. [Google Scholar] [CrossRef]
- Gohlke, H.; Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angewandte. Chem. Int. Ed. 2002, 41, 2644–2676. [Google Scholar] [CrossRef]
- Lindahl, M.; Tagesson, C. Flavonoids as phospholipase A2 inhibitors: Importance of their structure for selective inhibition of group II phospholipase A2. Inflammation 1997, 21, 347–356. [Google Scholar] [CrossRef]
- Erer, H.; Yeşilel, Z.; Zafer Yeşilel, O.; Darcan, C.; Büyükgüngör, O. Synthesis, spectroscopic, thermal Studies, antimicrobial activities and crystal structures of Co(II), Ni(II), Cu(II) and Zn(II)-orotate complexes with 2-methylimidazole. Polyhedron 2009, 28, 3087–3093. [Google Scholar] [CrossRef]
- Bourwina, M.; Walha, S.; Krayem, N.; Badraoui, R.; Brahmi, F.; Alshammari, W.M.; Mejdi, S.; Turnbull, M.M.; Roisnel, T.; Naïli, H. Organic-Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation. Inorganics 2023, 11, 76. [Google Scholar] [CrossRef]
Empirical Formula | (C3H7N6)2[ZnCl4]·H2O |
Formula weight (g∙mol−1) | 479.50 |
Temperature (K) | 296(2) |
Crystal system | Triclinic |
Space group | P |
a (Å) | 7.9571(7) |
b (Å) | 9.5933(9) |
c (Å) | 14.7622(15) |
α (°) | 98.766(3) |
β (°) | 105.404(3) |
γ (°) | 105.650(3) |
V (Å3) | 1015.19(17) |
Z | 2 |
λ (Mo Kα) (Å) | 0.71073 |
μ (mm−1) | 1.76 |
Crystal size (mm3) | 0.47 × 0.31 × 0.21 |
Crystal color/shape | Colorless/Prism |
HKL range | −9 ≤ h ≤ 9; −11 ≤ k ≤ 11; −17 ≤ l ≤ 17 |
θ range for data collection (°) | θmin = 2.7 ≤ θ ≤ θma = 22.4 |
Diffractometer | APEXII, Bruker-AXS |
R1 a,wR2 b [I > 2(I)] | 0.031, 0.066 |
GooF on F2 | 0.96 |
Transmission factors | Tmin = 0.476, Tmax = 0.653 |
Δρmax (e Å−3) | 0.63 |
Δρmin (e Å−3) | −0.57 |
D-H···A | D-H | H···A | D···A | D-H···A |
---|---|---|---|---|
O1-Hw1···Cl5i | 0.90 | 2.46 | 3.292(5) | 154 |
N1-H1···O1 | 0.86 | 1.86 | 2.712(6) | 173 |
O1-Hw2···Cl4 | 1.00 | 2.34 | 3.296(4) | 158 |
N5-H5A···N3ii | 0.86 | 2.23 | 3.084(6) | 173 |
N5-H5B···Cl2 | 0.86 | 2.53 | 3.303(5) | 151 |
N6-H6A···N8ii | 0.86 | 2.20 | 3.054(6) | 173 |
N6-H6B···Cl4 | 0.86 | 2.52 | 3.338(5) | 159 |
Symmetry codes: (i): −x+1, −y+1, −z; (ii): −x+1, −y+1, −z+1 |
Atom | NPA | Atom | NPA |
---|---|---|---|
C | 0.72977 | N | −0.80590 |
C | 0.69485 | N | −0.80770 |
C | 0.72842 | N | −0.79191 |
C | 0.73360 | N | −0.66983 |
C | 0.69532 | N | −0.67138 |
C | 0.73211 | N | −0.80519 |
N | −0.67023 | O | −1.01663 |
N | −0.67482 | Cl | −0.64514 |
N | −0.65984 | Cl | −0.70728 |
N | −0.80095 | Cl | −0.65962 |
N | −0.79798 | Cl | −0.64991 |
N | −0.65225 | Zn | 0.92521 |
BCPs | X-H···Y | ρ(r) | ∇2ρ(r) | E(r)10−2 | −V(r)/G(r) | ESP |
---|---|---|---|---|---|---|
1 | O-H···Cl | 0.0191 | 0.0548 | −0.0044 | 1.0073 | 23.81 |
2 | N-H···Cl | 0.0223 | 0.6070 | −0.0452 | 1.0320 | 25.30 |
3 | N-H···Cl | 0.0316 | 0.0795 | −0.1876 | 1.0875 | 25.06 |
4 | N-H···Cl | 0.0144 | 0.0454 | 0.0008 | 0.9143 | 22.15 |
5 | N-H···O | 0.0289 | 0.1247 | 0.1892 | 0.9351 | 23.65 |
6 | N-H···Cl | 0.0214 | 0.0612 | 0.0003 | 1.0000 | 23.06 |
7 | N-H···Cl | 0.0254 | 0.6400 | −0.1052 | 1.0647 | 25.20 |
8 | N-H···Cl | 0.0275 | 0.0704 | −0.1208 | 1.0638 | 23.42 |
9 | N···Cl | 0.0052 | 0.0156 | 0.0596 | 0.8181 | 26.08 |
Bacterial Strain | Gram | Inhibition Zone Diameter (mm) | MIC (mg/mL) | |
---|---|---|---|---|
1 mg/mL | 3 mg/mL | |||
Escherichia coli | _ | + | + | 1.8 |
Enterococcus feacalis | _ | + | + | |
Salmonella typhi | _ | + | + | |
Listeria monocytogenes | + | ++ | +++ | 2 |
Staphylococcus aureus | + | ++ | +++ | |
Micrococcus luteus | + | ++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salah, T.; Mhadhbi, N.; Ben Ahmed, A.; Hamdi, B.; Krayem, N.; Loukil, M.; Guesmi, A.; Khezami, L.; Houas, A.; Ben Hamadi, N.; et al. Physico-Chemical Characterization, DFT Modeling and Biological Activities of a New Zn (II) Complex Containing Melamine as a Template. Crystals 2023, 13, 746. https://doi.org/10.3390/cryst13050746
Salah T, Mhadhbi N, Ben Ahmed A, Hamdi B, Krayem N, Loukil M, Guesmi A, Khezami L, Houas A, Ben Hamadi N, et al. Physico-Chemical Characterization, DFT Modeling and Biological Activities of a New Zn (II) Complex Containing Melamine as a Template. Crystals. 2023; 13(5):746. https://doi.org/10.3390/cryst13050746
Chicago/Turabian StyleSalah, Thouraya, Noureddine Mhadhbi, Ali Ben Ahmed, Besma Hamdi, Najeh Krayem, Mohamed Loukil, Ahlem Guesmi, Lotfi Khezami, Ammar Houas, Naoufel Ben Hamadi, and et al. 2023. "Physico-Chemical Characterization, DFT Modeling and Biological Activities of a New Zn (II) Complex Containing Melamine as a Template" Crystals 13, no. 5: 746. https://doi.org/10.3390/cryst13050746
APA StyleSalah, T., Mhadhbi, N., Ben Ahmed, A., Hamdi, B., Krayem, N., Loukil, M., Guesmi, A., Khezami, L., Houas, A., Ben Hamadi, N., Naïli, H., & Costantino, F. (2023). Physico-Chemical Characterization, DFT Modeling and Biological Activities of a New Zn (II) Complex Containing Melamine as a Template. Crystals, 13(5), 746. https://doi.org/10.3390/cryst13050746