Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals
Abstract
:1. Introduction
2. Samples and Experimental Methods
3. Vibrational Spectroscopy
4. Structure Model and Modulations of Monoclinic LRMs
4.1. Refinement of the Structure Model
4.2. Positional Modulations in the Structure of Monoclinic LRMs
5. Discussion: Relationships between the Composition and Structures of LRMs
5.1. The Structure of Triclinic LRMs (slyudyankaite)
5.2. The Structure of Orthorhombic LRMs (vladimirivanovite)
5.3. Minerals with One-Dimensional Structure Modulation: Similarities and Differences
5.4. Cubic LRMs with Complicated Structure Modulation
5.5. General Remarks
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Löns, J.; Schulz, H. Strukturverfeinerung von Sodalith, Na8Si6Al6O24Cl2. Acta Crystallogr. 1967, 23, 434–436. [Google Scholar] [CrossRef]
- Hassan, I.; Peterson, R.C.; Grundy, H.D. The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group. Acta Crystallogr. Sect. C 1985, 41, 827–832. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Wise, W.S.; Zussman, J. Framework silicates: Silica minerals. Feldspathoids and the zeolites. In Rock-Forming Minerals; The Geological Society: London, UK, 2004; Volume 4B, 982p. [Google Scholar]
- Sapozhnikov, A.N.; Chukanov, N.V.; Shendrik, R.Y.; Vigasina, M.F.; Tauson, V.L.; Lipko, S.V.; Belakovskiy, D.I.; Levitskii, V.I.; Suvorova, L.F.; Ivanova, L.A. Lazurite: Validation as a mineral species with the formula Na7Ca(Al6Si6O24)(SO4)S⋅S3- H2O and new data. Geol. Ore Depos. 2022, 64, 470–475. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F.; Zubkova, N.V.; Pekov, I.V.; Schäfer, C.; Kasatkin, A.V.; Yapaskurt, V.O.; Pushcharovsky, D.Y. Extra-framework content in sodalite-group minerals: Complexity and new aspects of its study using infrared and Raman spectroscopy. Minerals 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Chukanov, N.V.; Sapozhnikov, A.N.; Shendrik, R.Y.; Vigasina, M.F.; Steudel, R. Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits. Minerals 2020, 10, 1042. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Aksenov, S.M.; Rastsvetaeva, R.K. Structural chemistry, IR spectroscopy, properties, and genesis of natural and synthetic microporous cancrinite- and sodalite-related materials: A review. Microporous Mesoporous Mater. 2021, 323, 111098. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N.; Kaneva, E.V.; Cherepanov, D.I.; Suvorova, L.F.; Levitsky, V.I.; Ivanova, L.A.; Reznitsky, L.Z. Vladimirivanovite, Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O, a new mineral of sodalite group. Geol. Ore Depos. 2012, 54, 557–564. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N.; Tauson, V.L.; Lipko, S.V.; Shendrik, R.Y.; Levitskii, V.I.; Suvorova, L.F.; Chukanov, N.V.; Vigasina, M.F. On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)−·nH2O. Am. Mineral. 2021, 106, 226–234. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N.; Bolotina, N.B.; Chukanov, N.V.; Shendrik, R.Y.; Kaneva, E.V.; Vigasina, M.F.; Ivanova, L.A.; Tauson, V.L.; Lipko, S.V. Slyudyankaite, Na28Ca4(Si24Al24O96)(SO4)6(S6)1/3(CO2)·2H2O, a new sodalite-group mineral from the Malo-Bystrinskoe lazurite deposit, Baikal Lake area. Am. Mineral. 2023, in press. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Bolotina, N.B.; Sapozhnikov, A.N.; Kashaev, A.A.; Schoenleber, A.; Chapuis, G. Average structure of cubic lazurite with a three-dimensional incommensurate modulation. Crystallogr. Rep. 2002, 47, 404–407. [Google Scholar] [CrossRef]
- Bolotina, N.B.; Rastsvetaeva, R.K.; Sapozhnikov, A.N.; Kashaev, A.A.; Shönleber, A.; Chapuis, G. Incommensurately modulated structure of isotropic lazurite as a product of twinning of two-dimensionally modulated domains. Crystallogr. Rep. 2003, 48, 721–727. [Google Scholar] [CrossRef]
- Bolotina, N.B.; Rastsvetaeva, R.K.; Chapuis, G.; Schönleber, A.; Sapozhnikov, A.N.; Kashaev, A.A. On the symmetry of optically isotropic modulated lazurites from the Baikal region. Ferroelectrics 2004, 305, 95–98. [Google Scholar] [CrossRef]
- Bolotina, N.B. Isotropic lazurite: A cubic single crystal with an incommensurate three-dimensional modulation of the structure. Crystallogr. Rep. 2006, 51, 968–976. [Google Scholar] [CrossRef]
- Evsyunin, V.G.; Sapozhnikov, A.N.; Kashaev, A.A.; Rastsvetaeva, R.K. Crystal structure of triclinic lazurite. Crystallogr. Rep. 1997, 42, 938–945. [Google Scholar]
- Evsyunin, V.G.; Sapozhnikov, A.N.; Rastsvetaeva, R.K.; Kashaev, A.A. Modulated structure of orthorhombic lazurite. Crystallogr. Rep. 1998, 43, 999–1002. [Google Scholar]
- Kaneva, E.V.; Cherepanov, D.I.; Suvorova, L.F.; Sapozhnikov, A.N.; Levitsky, V.I. Orthorhombic lazurite from the Tultui deposit in the Baikal region. Geol. Ore Depos. 2011, 53, 678–682. [Google Scholar] [CrossRef]
- Bolotina, N.B.; Rastsvetaeva, R.K.; Sapozhnikov, A.N. Average structure of incommensurately modulated monoclinic lazurite. Crystallogr. Rep. 2006, 51, 589–595. [Google Scholar] [CrossRef]
- Bolotina, N. Forms and origin of structure modulation in lazurites. Philos. Mag. 2007, 87, 2679–2685. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Steudel, R. Inorganic Polysulfides Sn2− and Radical Anions Sn−. In Elemental Sulfur und Sulfur-Rich Compounds II. Topics in Current Chemistry; Steudel, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 231. [Google Scholar] [CrossRef]
- Eckert, B.; Steudel, R. Molecular Spectra of Sulfur Molecules and Solid Sulfur Allotropes. In Elemental Sulfur und Sulfur-Rich Compounds II. Topics in Current Chemistry; Steudel, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 231. [Google Scholar] [CrossRef]
- Steudel, R.; Chivers, T. The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 2019, 48, 3279–3319, Erratum in Chem. Soc. Rev. 2019, 48, 4338–4338. [Google Scholar] [CrossRef]
- Rejmak, P. Computational refinement of the puzzling red tetrasulfur chromophore in ultramarine pigments. Phys. Chem. Chem. Phys. 2020, 22, 22684–22698. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Shendrik, R.Y.; Vigasina, M.F.; Pekov, I.V.; Sapozhnikov, A.N.; Shcherbakov, V.D.; Varlamov, D.A. Crystal chemistry, isomorphism, and thermal conversions of extra-framework components in sodalite-group minerals. Minerals 2022, 12, 887. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Zubkova, N.V.; Pekov, I.V.; Shendrik, R.Y.; Varlamov, D.A.; Vigasina, M.F.; Belakovskiy, D.I.; Britvin, S.N.; Yapaskurt, V.O.; Pushcharovsky, D.Y. Sapozhnikovite, Na8(Al6Si6O24)(HS)2, a new sodalite-group mineral from the Lovozero alkaline massif, Kola Peninsula. Mineral. Mag. 2022, 86, 49–59. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Shchipalkina, N.V.; Shendrik, R.Y.; Vigasina, M.F.; Tauson, V.L.; Lipko, S.V.; Varlamov, D.A.; Shcherbakov, V.D.; Sapozhnikov, A.N.; Kasatkin, A.V.; et al. Isomorphism and mutual transformations of S-bearing components in feldspathoids with microporous structures. Minerals 2022, 12, 1456. [Google Scholar] [CrossRef]
- Petříček, V.; Eigner, V.; Dušek, M.; Čejchan, A. Discontinuous modulation functions and their application for analysis of modulated structures with the computing system JANA2006. Z. Kristallogr.—Cryst. Mater. 2016, 231, 301–312. [Google Scholar] [CrossRef]
- Sapozhnikov, A.N.; Tauson, V.L.; Matveeva, L.N. Stepwise change of modulation wavelength in structure of cubic lazurite under annealing. Zap. Vserossiiskogo Mineral. Obs. 2001, 130, 121–125. (In Russian) [Google Scholar]
- Sapozhnikov, A.N.; Ivanov, V.G.; Levitsky, V.I.; Piskunova, L.F. Structural-mineralogical peculiarities of lasurite from the south-western pamirs. ZAP. Vserossiiskogo Mineral. Obs. 1993, 122, 108–115. (In Russian) [Google Scholar]
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Assignment |
---|---|---|---|---|
448 s, 395 | 449 s, 396 | 448 s, 395 | 447 s, 396 | Lattice modes involving framework bending and liberations of extraframework groups |
542 w | S6 stretching mode | |||
580 w | Antisymmetric stretching vibrations of the S3●− radical anions | |||
619 | 614 | 617 | 614 | Bending vibrations of the SO42− anionic groups (the F2(ν4) mode) |
642 | Stretching vibrations of the neutral S4 molecule having cis conformation | |||
709, 697, 655 | 718, 669, 647 | 725 sh, 699, 654 | 715, 697, 656 | Mixed vibrations of the aluminosilicate framework |
1000 s | 999 s | 1003 s | 1002 s | Stretching vibrations of the aluminosilicate framework |
1138, 1095 | 1133, 1116 | 1137 | 1138, 1107 | Asymmetric stretching vibrations of the SO42− anionic groups (the F2(ν3) mode) |
1683 w, 1622 w | 1665 w | 1660, 1620 sh | 1632 w | Bending vibrations of the H2O molecules |
2040 w | Stretching vibrations of COS molecules | |||
2342 w | 2342 w | 2385 w *, 2341 | Antisymmetric stretching vibrations of CO2 molecules | |
3415 | 3605 sh, 3545, 3343 | 3617, 3530 sh, 3330 | 3610 w | O–H stretching vibrations of H2O molecules |
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Assignment |
---|---|---|---|---|
219 | Combination of low-frequency lattice modes | |||
257 | 258 | 253 | 255 | S3●− bending mode (ν2) |
285 w | 284 w | 283 w | 284 | Combination of low-frequency lattice modes involving Na+ cations and/or S6 bending mode |
299 | S4●− bending vibrations | |||
320 | cis-S4 mixed ν4 mode (combined symmetric bending + stretching vibrations) | |||
380 w | cis-S4 mixed ν3 mode | |||
438 w | 437 | SO42− (the E(ν2) mode) and/or δ(O–Si(Al)–O) bending vibrations | ||
477 w | S6 stretching mode and/or mixed ν4 mode of trans–S4 or S42− | |||
503 | Bending vibrations of four-membered aluminosilicate rings belonging to the framework | |||
546 s | 545 s | 542 s | 545 s | S3●− symmetric stretching (ν1) mode |
585 sh | 576 sh | 570 sh | 580 w | S3●− antisymmetric stretching (ν3), possibly, overlapping with the stretching band of S2●− |
614 w | SO42− bending vibrations (F2(ν4) mode) and/or S2●− stretching mode | |||
646 w | cis-S4 symmetric stretching mode | |||
682 w | trans-S4 symmetric stretching ν3 mode | |||
811 | 804 | 799 | 808 | S3●− combination mode (ν1 + ν2) |
825 sh | 826 w | Framework stretching vibrations? | ||
989 w | 986 w | 985 s | SO42− symmetric stretching vibrations (A1(ν1) mode) | |
1093s | 1092s | 1088s | 1088 s | S3●− overtone (2’ν1) |
1279 w | CO2 Fermi resonance | |||
1340 | Symmetric C–O stretching vibrations of CO2 molecules involved in strong dipole–dipole interactions with H2O molecules | |||
1363 | 1352 | 1348 | S3●− combination mode (2ν1 + ν2) | |
1381 | CO2 Fermi resonance | |||
1638 | 1639 | 1636 | 1631 | S3●− overtone (3×ν1) |
1903 | 1903 w | 1891 | 1891 w | S3●− combination mode (3×ν2 + ν1) |
2181 | 2178 | 2175 | 2172 | S3●− overtone (4×ν1) |
2440 w | 2435 w | 2438 w | 2428 w | S3●− combination mode (4×ν2 + ν1) |
2575 w | HS− stretching mode | |||
2720 | 2709 | 2721 | 2710 | S3●− overtone (5×ν1) |
2975 w | 2985 w | 2964 w | S3●− combination mode (5×ν1 + ν2) | |
3260 w | 3240 w | 3252 | 3247 w | S3●− overtone (6×ν1) |
3490 w | H2O stretching vibrations |
Crystal Data | |
---|---|
Chemical formula | Na6.63 Ca1.26 K0.04 (Al6Si6O24)(SO4)1.53 (S3)0.33 Cl0.05 |
Z | 2 |
Crystal system, (3+1)D space group | monoclinic, P11a(00δ)0 * |
Modulation wavevector | q ≈ 0.43c* |
Temperature (K) | 293 |
a, b, c (Å); γ (deg) | 9.0692(1), 12.8682(1), 12.8725(1); 90.186(1) |
V (Å3) | 1502.27(1) |
Radiation type | CuKα, λ = 1.54178 Å |
Data collection | |
Rint (obs/all) (%) | 8.02/8.95 for 5386/9139 reflections averaged from 11,590/20,385 reflections |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | Based on F |
Robs [F > 3σ(F)], wRobs (F) (%) | 7.62, 7.71 |
Robs (F), wRobs (F) (%) for main reflections | 6.74, 7.19 |
Robs (F), wRobs (F) (%) for satellites | 8.42, 8.11 |
Weighting_scheme | w = 1/[σ2(F)+(0.01F)2] |
No. of parameters | 462 |
No. of restraints | 30 |
No. of constraints | 72 |
Δρmax, Δρmin (e Å−3) | 1.04, −0.80 |
Mineral | Unit-Cell Values a. b c (Å) α, β, γ (°) | Symmetry Group | Modulation Vector | References |
---|---|---|---|---|
Lazurite (FK 1, Sample 1) | acub = 9.087(3) | P23 (by analogy with Sample 5) | q ~ 0.30c* (orthorhombic setting) | [4,6] |
Orthorhombic LRM (vladinirivanovite, Sample 2) a ~ acub, b ~ acub√2 c ~ 3acub√2 | a = 9.057 b = 12.843 c = 38.513 | Pnaa | q = 0.33c* | [8,16,17] |
Monoclinic LRM (similar to Sample 3) a ~ acub, b ~ c ~ acub√2 | a = 9.0692(1) b = 12.8682(1) c = 12.8725(1) γ = 90.186(1) | P11a(00δ)0 | q ~ 0.43c* | [18,19], this work |
Triclinic LRM (slyudyankaite, Sample 4) a ~ acub, b ~ acub√2 c ~ 2acub√2 | a = 9.0523(4) b = 12.8806(6) c = 25.681(1) α = 89.988(2) β = 90.052(1) γ = 90.221(1) (T = 170 K) | P1 | q = 0.5c* | [10,15] |
Cubic LRM (SO3-bearing haüyne, MD 1, Sample 5) | acub = 9.077(1) | P23 | q ~ 0.43c* (orthorhombic setting) | [6,11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolotina, N.B.; Sapozhnikov, A.N.; Chukanov, N.V.; Vigasina, M.F. Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals. Crystals 2023, 13, 768. https://doi.org/10.3390/cryst13050768
Bolotina NB, Sapozhnikov AN, Chukanov NV, Vigasina MF. Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals. Crystals. 2023; 13(5):768. https://doi.org/10.3390/cryst13050768
Chicago/Turabian StyleBolotina, Nadezhda B., Anatoly N. Sapozhnikov, Nikita V. Chukanov, and Marina F. Vigasina. 2023. "Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals" Crystals 13, no. 5: 768. https://doi.org/10.3390/cryst13050768
APA StyleBolotina, N. B., Sapozhnikov, A. N., Chukanov, N. V., & Vigasina, M. F. (2023). Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals. Crystals, 13(5), 768. https://doi.org/10.3390/cryst13050768