Recent Advances in Polydopamine for Surface Modification and Enhancement of Energetic Materials: A Mini-Review
Abstract
:1. Introduction
2. Self-Polymerization Mechanisms and Catalytic Reactions of PDA
3. Applications of PDA in Energetic Materials
3.1. Surface Modification of Energetic Crystals
3.2. Interfacial Bonding and Mechanical Enhancement of Energetic Composites
3.3. Thermal, Sensitivity, and Safety Modification
3.4. Reactivity and Energetic Performances Tailoring
4. Conclusions
5. Future Directions
- The content of PDA, which is significant to the energetic performances of EMs, is very hard to measure due to its insolubility. Since the current method only can characterize the thickness of PDA film, converting thickness to content seems to be necessary.
- Low polymerization and deposition rates of PDA on EMs limit its applications. PDA formation processes are affected by many factors including temperature, pH value, oxidizing catalysts, and so on. Optimal processing conditions are worth exploring, especially for EMs with high sensitivity, reactivity, or oxidability.
- The binding effect or secondary functionalization of PDA could be further extended to combine substances with high surface tension to fabricate CDS microstructures which originally cannot bond stably.
- With rapid development of EMs, the applications of PDA in the next-generation EMs such as N5 salts, polyCO, and other high-nitrogen compounds should raise attention for stabilization and sensitivity reduction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Lee, B.P.; Messersmith, P.B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, H.; Hanks, T.W. Polydopamine: A bioinspired adhesive and surface modification platform. Polym. Int. 2022, 71, 578–582. [Google Scholar] [CrossRef]
- Schanze, K.S.; Lee, H.; Messersmith, P.B. Ten years of polydopamine: Current status and future directions. ACS Appl. Mater. Interfaces 2018, 10, 7521–7522. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ai, K.; Lu, L.H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ramimoghadam, D.; Mirabedini, A. The use of polydopamine coatings for timber protection against the fire: A critical review and feasibility analysis. Prog. Org. Coat. 2023, 175, 107359. [Google Scholar] [CrossRef]
- Lu, Q.; Danner, E.; Waite, J.H.; Israelachvili, J.N.; Zeng, H.; Hwang, D.S. Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface 2013, 10, 20120759. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.S.; Tang, G.; Chiang, P.J.; Bettinge, C.J. Texture-dependent adhesion in polydopamine nanomembrane. ACS Appl. Mater. Interfaces 2018, 10, 7681–7687. [Google Scholar] [CrossRef]
- Lin, C.; Gong, F.; Yang, Z.; Zhao, X.; Li, Y.; Zeng, C.; Li, J.; Guo, S. Core-shell structured HMX@polydopamine energetic microspheres: Synergistically enhanced mechanical, thermal, and safety performances. Polymers 2019, 11, 568. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Liu, P.; Gong, F.; Tao, B.; Gu, J.; Yang, Z.; Yan, Q.L. Tuning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control. ACS Appl. Mater. Interfaces 2018, 10, 32849–32858. [Google Scholar] [CrossRef]
- Łuczak, T. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochim. Acta 2008, 53, 5725–5731. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Miller, D.J.; Freeman, B.D.; Paul, D.R.; Bielawski, C.W. Elucidating the structure of poly(dopamine). Langmuir 2012, 28, 6428–6435. [Google Scholar] [CrossRef]
- Hong, S.; Na, Y.S.; Choi, S.; Song, I.T.; Kim, W.Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012, 22, 4711–4717. [Google Scholar] [CrossRef]
- Alfieri, M.L.; Micillo, R.; Panzella, L.; Crescenzi, O.; Oscurato, S.L.; Maddalena, P.; Napolitano, A.; Ball, V.; d’Ischia, M. Structural basis of polydopamine film formation: Probing 5,6-dihydroxyindole-based eumelanin type units and the porphyrin issue. ACS Appl. Mater. Interfaces 2018, 10, 7670–7680. [Google Scholar] [CrossRef]
- Du, X.; Li, L.; Li, J.; Yang, C.; Frenkel, N.; Welle, A.; Heissler, S.; Nefedov, A.; Grunze, M.; Levkin, P.A. UV-triggered dopamine polymerization: Control of polymerization, surface coating and photopatterning. Adv. Mater. 2014, 47, 8029–8033. [Google Scholar] [CrossRef]
- He, A.; Zhang, C.; Lv, Y.; Zhong, Q.Z.; Yang, X.; Xu, Z.K. Mussel-inspired coatings directed and accelerated by an electric field. Macromol. Rapid Commun. 2016, 37, 1460–1465. [Google Scholar] [CrossRef]
- Kim, H.W.; McCloskey, B.D.; Choi, T.H.; Lee, C.; Kim, M.J.; Freeman, B.D.; Park, H.B. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Appl. Mater. Interfaces 2013, 5, 233–238. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, F.L.; Li, J.; Li, B.J.; Zhao, C.S. Oxidant induced dopamine polymerization for multifunctional coatings. Polym. Chem. 2010, 1, 1430–1433. [Google Scholar] [CrossRef]
- Luo, C.; Liu, Q. Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 8297–8307. [Google Scholar] [CrossRef]
- Zhang, C.; Ou, Y.; Lei, W.X.; Wan, L.S.; Ji, J.; Xu, Z.K. CuSO4/H2O2-Induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew. Chem. Int. Ed. 2016, 55, 3054–3057. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.N.; Du, Y.; Ma, M.Q.; Xu, Z.K. CuSO4/H2O2-Triggered polydopamine/poly(sulfobetainemethacrylate) coatings for antifouling membrane surfaces. Langmuir 2017, 33, 1210–1216. [Google Scholar] [CrossRef]
- Zhou, P.; Deng, Y.; Lyu, B.; Zhang, R.; Zhang, H.; Ma, H.; Lyu, Y.; Wei, S. Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: Formation, characterization and biofunctional evaluation. PLoS ONE 2014, 9, e113087. [Google Scholar] [CrossRef]
- Zheng, W.; Fan, H.; Wang, L.; Jin, Z. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir 2015, 31, 11671–11677. [Google Scholar] [CrossRef]
- Ponzio, F.; Barthes, J.; Bour, J.; Michel, M.; Bertani, P.; Hemmerle, J.; d’Ischia, M.; Ball, V. Oxidant control of polydopamine surface chemistry in acids: A mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem. Mater. 2016, 28, 4697–4705. [Google Scholar] [CrossRef]
- Lin, C.; Liu, S.; Qian, W.; Gong, F.; Zhao, X.; Pan, L.; Zhang, J.; Yang, Z.; Li, J.; Guo, S. Controllable tuning of energetic crystals by bioinspired polydopamine. Energetic Mater. Front. 2020, 1, 59–66. [Google Scholar] [CrossRef]
- Gong, F.; Zhang, J.; Ding, L.; Yang, Z.; Liu, X. Mussel-inspired coating of energetic crystals: A compact core-shell structure with highly enhanced thermal stability. Chem. Eng. J. 2017, 309, 140–150. [Google Scholar] [CrossRef]
- Gong, F.; Yang, Z.; Qian, W.; Liu, Y.; Zhang, J.; Ding, L.; Lin, C.; Zeng, C.; Yan, Q. Kinetics for inhibited polymorphic transition of HMX crystal after strong surface confinement. J. Phys. Chem. C 2019, 123, 11011–11019. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Q.; Zhao, W.; Guo, X.; Li, D.; Sun, X. Enhanced crystal stabilities of ε-CL-20 via core-shell structured energetic composites. Appl. Sci. 2020, 10, 2663. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Xue, Z.; Chen, S.; Chen, J.; Li, X.; Xu, K.; Yan, Q.L. Stabilization of ε-CL-20 crystals by a minor interfacial doping of polydopamine-coated graphene oxide. Appl. Surf. Sci. 2020, 510, 145454. [Google Scholar] [CrossRef]
- Lin, C.; Cheng, B.; Zhang, H.; Gong, F.; Yang, Z.; Liu, S.; Li, J.; Guo, S. Tailoring the irreversible thermal expansion of 1,3,5-triamino-2,4,6-trinitrobenzene crystals by bioinspired polydopamine coating. J. Appl. Polym. Sci. 2019, 137, 48695. [Google Scholar] [CrossRef]
- Lin, C.; Gong, F.; Yang, Z.; Pan, L.; Liu, S.; Li, J.; Guo, S. Bio-inspired fabrication of core@shell structured TATB/polydopamine microparticles via in situ polymerization with tunable mechanical properties. Polym. Test. 2018, 68, 126–134. [Google Scholar] [CrossRef]
- He, G.; Yang, Z.; Pan, L.; Zhang, J.; Liu, S.; Yan, Q.L. Bioinspired interfacial reinforcement of polymer based energetic composites with a high loading of solid explosive crystals. J. Mater. Chem. A 2017, 5, 13499. [Google Scholar] [CrossRef]
- Lin, C.; Wen, Y.; Huang, X.; Yang, Z.; Gong, F.; Zhao, X.; Hao, S.; Pan, L.; Ding, L.; Li, J.; et al. Tuning the mechanical performance efficiently of various LLM-105 based PBXs via bioinspired interfacial reinforcement of polydopamine modification. Compos. Part B-Eng. 2020, 186, 107824. [Google Scholar] [CrossRef]
- Lin, C.; Gong, F.; Qian, W.; Huang, X.; Tu, X.; Sun, G.; Bai, L.; Wen, Y.; Yang, Z.; Li, J. Tunable interfacial interaction intensity: Construction of a bio-inspired interface between polydopamine and energetic crystals. Compos. Sci. Technol. 2021, 211, 108816. [Google Scholar] [CrossRef]
- Zeng, C.C.; Gong, F.Y.; Lin, C.M.; He, G.S.; Pan, L.P.; Li, Y.B.; Hao, S.L.; Yang, Z.J. Bioinspired energetic composites with enhanced interfacial, thermal and mechanical performance by “grafting to” way. Energetic Mater. Front. 2021, 2, 218–227. [Google Scholar] [CrossRef]
- Lin, C.; Yang, X.; He, G.; Wen, Y.; Qian, W.; Liu, R.; Liu, S.; Gong, F.; Zhang, J.; Zeng, C.; et al. Mussel-inspired interfacial reinforcement of thermoplastic polyurethane based energetic composites. Compos. Sci. Technol. 2023, 232, 109875. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, Z.; Zhang, J.; Li, Y.; Lin, C.; He, G.; Zhao, X.; Liu, S.; Gong, F. Enhanced interfacial and mechanical properties of PBX composites via surface modification on energetic crystals. Polymers 2019, 11, 1308. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Lin, C.; Zhang, J.; Liu, J.; He, G.; Li, Y.; Liu, S.; Gong, F.; Yang, Z. Grafting hyperbranched polyester on the energetic crystals: Enhanced mechanical properties in highly-loaded polymer based composites. Compos. Sci. Technol. 2019, 184, 107842. [Google Scholar] [CrossRef]
- He, G.; Li, X.; Bai, L.; Meng, L.; Dai, Y.; Sun, Y.; Zeng, C.; Yang, Z.; Yang, G. Multilevel core-shell strategies for improving mechanical properties of energetic polymeric composites by the “grafting-from” route. Compos. Part B-Eng. 2020, 191, 107967. [Google Scholar] [CrossRef]
- Zhu, Q.; Xiao, C.; Li, S.; Luo, G. Bioinspired fabrication of insensitive HMX particles with polydopamine coating. Propell. Explos. Pyrot. 2016, 41, 1092–1097. [Google Scholar] [CrossRef]
- Lin, C.; Huang, B.; Gong, F.; Yang, Z.; Liu, J.; Zhang, J.; Zeng, C.; Li, Y.; Li, J.; Guo, S. Core@double-shell structured energetic composites with reduced sensitivity and enhanced mechanical properties. ACS Appl. Mater. Interfaces 2019, 11, 30341–30351. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zeng, C.; Wen, Y.; Gong, F.; He, G.; Li, Y.; Yang, Z.; Ding, L.; Li, J.; Guo, S. Litchi-like core-shell HMX@HPW@PDA microparticles for polymer-bonded energetic composites with low sensitivity and high mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 4002–4013. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Z.; Fu, Y.; Zhu, Y.; Chen, L.; Yang, J.; Chen, Q.; Xu, B.; Chen, F.; Liao, X. Bio-inspired synthesis of RDX@polydopamine@TiO2 double layer core-shell energetic composites with reduced impact and electrostatic discharge sensitivities. Appl. Surf. Sci. 2021, 567, 150729. [Google Scholar] [CrossRef]
- Zhu, Q.; Xiao, C.; Xie, X.; Zheng, B.H.; Li, S.B.; Luo, G. Thermal decomposition enhancement of HMX by bonding with TiO2 Nanoparticles. Propellants Explos. Pyrotech. 2019, 44, 438–446. [Google Scholar] [CrossRef]
- Yu, Q.; Zhao, C.; Zhu, Q.; Sui, H.; Yin, Y.; Li, J. Influence of polydopamine coating on the thermal stability of 2,6-diamino-3,5-dinitropyrazine-1-oxide explosive under different heating conditions. Thermochim. Acta 2020, 686, 178530. [Google Scholar] [CrossRef]
- He, G.; Tian, X.; Dai, Y.; Li, X.; Lin, C.; Yang, Z.; Liu, S. Bioinspired interfacial engineering of polymer based energetic composites towards superior thermal conductivity via reducing thermal resistance. Appl. Surf. Sci. 2019, 493, 679–690. [Google Scholar] [CrossRef]
- He, G.; Liu, J.; Gong, F.; Lin, C.; Yang, Z. Bioinspired mechanical and thermal conductivity reinforcement of highly explosive-filled polymer composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 1–9. [Google Scholar] [CrossRef]
- He, W.; Tao, B.; Yang, Z.; Yang, G.; Guo, X.; Liu, P.J.; Yan, Q.L. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites. Chem. Eng. J. 2019, 369, 1093–1101. [Google Scholar] [CrossRef]
- He, W.; Ao, W.; Yang, G.; Yang, Z.; Yan, Q.L. Metastable Energetic Nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chem. Eng. J. 2020, 381, 122623. [Google Scholar] [CrossRef]
- Li, C.Y.; Kong, S.; Liao, D.J.; An, C.W.; Ye, B.Y.; Wang, J.Y. Fabrication and characterization of mussel-inspired layer-by-layer assembled CL-20-based energetic films via micro-jet printing. Def. Technol. 2022, 18, 1748–1759. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Li, D.; Ou, Y.; Du, S.; Jiao, Q.; Peng, J.; Liu, P. Recent Advances in Polydopamine for Surface Modification and Enhancement of Energetic Materials: A Mini-Review. Crystals 2023, 13, 976. https://doi.org/10.3390/cryst13060976
Qin Z, Li D, Ou Y, Du S, Jiao Q, Peng J, Liu P. Recent Advances in Polydopamine for Surface Modification and Enhancement of Energetic Materials: A Mini-Review. Crystals. 2023; 13(6):976. https://doi.org/10.3390/cryst13060976
Chicago/Turabian StyleQin, Ziquan, Dapeng Li, Yapeng Ou, Sijia Du, Qingjie Jiao, Jiwu Peng, and Ping Liu. 2023. "Recent Advances in Polydopamine for Surface Modification and Enhancement of Energetic Materials: A Mini-Review" Crystals 13, no. 6: 976. https://doi.org/10.3390/cryst13060976