Preparation, Properties, and Applications of Near Stoichiometric Lithium Tantalate Crystals
Abstract
:1. Introduction
2. Physical Properties of Crystals
3. Crystal Preparation Methods
3.1. Double Crucible Czochralski Method
3.2. Cosolvent Method
3.3. Diffusion Method
4. Application of Crystal in Optics
4.1. Holographic Memory
4.2. Application of Nonlinear Optics
5. Application of Crystal in Radio Frequency SAW Filter
6. Expectation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imbrock, J.; Wevering, S.; Buse, K.; Krätzig, E. Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses. JOSA B 1999, 16, 1392–1397. [Google Scholar] [CrossRef]
- Hatanaka, T.; Nakamura, K.; Taniuchi, T.; Ito, H.; Furukawa, Y.; Kitamura, K. Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3. Opt. Lett. 2000, 25, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Porter, S. A brief guide to pyroelectric detectors. Ferroelectrics 1981, 33, 193–206. [Google Scholar] [CrossRef]
- Lerner, P.; Legras, C.; Dumas, J. Stoechiométrie des monocristaux de métaniobate de lithium. J. Cryst. Growth 1968, 3, 231–235. [Google Scholar] [CrossRef]
- Abrahams, S.; Marsh, P. Defect structure dependence on composition in lithium niobate. Acta Crystallogr. Sect. B Struct. Sci. 1986, 42, 61–68. [Google Scholar] [CrossRef]
- Palatnikov, M.; Shcherbina, O.; Sandler, V.; Sidorov, N.; Bormanis, K. Effects of VTE treatment on composition of lithium tantalate single crystals. Ferroelectrics 2011, 417, 46–52. [Google Scholar] [CrossRef]
- Imbrock, J.; Kip, D.; Krätzig, E. Nonvolatile holographic storage in iron-doped lithium tantalate with continuous-wave laser light. Opt. Lett. 1999, 24, 1302–1304. [Google Scholar] [CrossRef]
- He, C.; Li, W.; Wang, J. Growth and optical properties of indium neodymium doped lithium tantalate single crystals. Acta Opt. Sin. 2018, 38, 0116003. [Google Scholar]
- Katz, M.; Route, R.K.; Hum, D.S.; Parameswaran, K.R.; Miller, G.D.; Fejer, M.M. Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications. Opt. Lett. 2004, 29, 1775–1777. [Google Scholar] [CrossRef]
- Hum, D.S.; Route, R.K.; Miller, G.D.; Kondilenko, V.; Alexandrovski, A.; Huang, J.; Urbanrk, K.; Byer, R.L.; Fejer, M.M. Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion. J. Appl. Phys. 2007, 101, 093108. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kitamura, K.; Hatano, K.; Bernasconi, P.; Montemezzani, G.; Günter, P. Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range. JPN J. Appl. Phys. 1999, 38, 1816. [Google Scholar] [CrossRef]
- Meyn, J.P.; Fejer, M. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt. Lett. 1997, 22, 1214–1216. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-dena, O.; Villalobos-mendoza, S.D.; Farías, R.; Fierro-Ruiz, C.D. Lithium niobate single crystals and powders reviewed—Part II. Crystals 2020, 10, 990. [Google Scholar] [CrossRef]
- Katz, M.; Blau, P.; Shulga, B. Room Temperature High Power Frequency Conversion in Periodically Poled Quasi-Phase-Matched Crystals. In Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VII; SPIE: Bellingham, WA, USA, 2008; Volume 6875, pp. 18–31. [Google Scholar]
- Shi, L.; Kong, Y.; Yan, W.; Liu, H.; Li, X.; Xie, X.; Zhao, D.; Sun, L.; Xu, J.; Sun, J. The composition dependence and new assignment of the Raman spectrum in lithium tantalate. Solid State Commun. 2005, 135, 251–256. [Google Scholar] [CrossRef]
- Shi, L.; Kong, Y.; Yan, W.; Sun, J.; Chen, S.; Zhang, L.; Zhang, W.; Liu, H.; Li, X.; Xie, X. Determination of the composition of lithium tantalate by means of Raman and OH− absorption measurements. Mater. Chem. Phys. 2006, 95, 229–234. [Google Scholar] [CrossRef]
- Köhler, T.; Zschornak, M.; Röder, C.; Hanzig, J.; Gärtner, G.; Leisegang, T.; Meyer, D.C. Chemical environment and occupation sites of hydrogen in LiMO3. J. Mater. Chem. C 2023, 11, 520–538. [Google Scholar] [CrossRef]
- Kitamura, K.; Takekawa, S.; Nakamura, M.; Kurimura, S.; Louchev, O. Defect density dependence of thermal conductivity and temperature control of quasi-phasematching devices. In Conference on Lasers and Electro-Optics; Optical Society of America: Baltimore, ML, USA, 2005; pp. 22–27. [Google Scholar]
- Tian, L.; Gopalan, V.; Galambos, L. Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl. Phys. Lett. 2004, 85, 4445–4447. [Google Scholar] [CrossRef]
- Kitamura, K.; Furukawa, Y.; Takekawa, S.; Hatanaka, T.; Ito, H.; Gopalan, V. Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices. Ferroelectrics 2001, 257, 235–243. [Google Scholar] [CrossRef]
- Hsu, W.T.; Chen, Z.B.; You, C.A.; Chou, M.M.; Lin, Y.Y.; Huang, Y.C.; Rai, D.K.; Lan, C.W. Zone-leveling Czochralski growth and characterization of undoped and MgO-doped near-stoichiometric lithium tantalate crystals. J. Cryst. Growth 2008, 311, 66–71. [Google Scholar] [CrossRef]
- Juvalta, F.; Jazbinsek, M.; Günter, P.; Kitamura, K. Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths. JOSA B 2006, 23, 276–281. [Google Scholar] [CrossRef]
- Gopalan, V.; Mitchell, T.E.; Furukawa, Y.; Kitamura, K. The role of nonstoichiometry in 180 domain switching of LiNbO3 crystals. Appl. Phys. Lett. 1998, 72, 1981–1983. [Google Scholar] [CrossRef]
- Wirp, A.; Bäumer, C.; Hesse, H.; Kip, D.; Krätzig, E. Magnesium-doped near-stoichiometric lithium tantalate crystals for nonlinear optics. Phys. Status Solid A 2005, 202, 1120–1123. [Google Scholar] [CrossRef]
- Birnie, D.P., III; Bordui, P.F. Defect-based description of lithium diffusion into lithium niobate. J. Appl. Phys. 1994, 76, 3422–3428. [Google Scholar] [CrossRef]
- Song, L.; Li, M.; Xu, Y. Study on the Growth and Physical Properties of lithium tantalate Crystal. J. Synth. Cryst. 1994, 23, 146–150. [Google Scholar]
- Pryakhina, V.I.; Greshnyakov, E.D.; Lisjikh, B.I.; Nebogatikov, M.S.; Shur, V.Y. Influence of composition gradients on heat induced initial domain structure in lithium tantalate. Ferroelectrics 2019, 542, 13–20. [Google Scholar] [CrossRef]
- Kitamura, K.; Furukawa, Y.; Niwa, K.; Gopalan, V.; Mitchell, T.E. Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3. Appl. Phys. Lett. 1998, 73, 3073–3075. [Google Scholar] [CrossRef]
- Kim, I.G.; Takekawa, S.; Furukawa, Y.; Lee, M.; Kitamura, K. Growth of LixTa1−xO3 single crystals and their optical properties. J. Cryst. Growth 2001, 229, 243–247. [Google Scholar] [CrossRef]
- Kushibiki, J.; Takanaga, I.; Komatsuzaki, S.; Ujiie, T. Chemical composition dependences of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals. J. Appl. Phys. 2002, 91, 6341–6349. [Google Scholar] [CrossRef]
- Kitamura, K.; Yamamoto, J.K.; Iyi, N.; Kirnura, S.; Hayashi, T. Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J. Cryst. Growth 1992, 116, 327–332. [Google Scholar] [CrossRef]
- Jia, B.; Zhao, Y. Near stoichiometric lithium tantalate crystal growth and its periodic polarization. Acta Opt. Sin. 2010, 30, 3249–3252. [Google Scholar]
- Bordui, P.F.; Norwood, R.G.; Bird, C.D.; Carella, J.T. Stoichiometry issues in single-crystal lithium tantalate. J. Appl. Phys. 1995, 78, 4647–4650. [Google Scholar] [CrossRef]
- Holtmann, F.; Imbrock, J.; Bäumer, C.; Hesse, H.; Krätzig, E.; Kip, D. Photorefractive properties of undoped lithium tantalate crystals for various composition. J. Appl. Phys. 2004, 96, 7455–7459. [Google Scholar] [CrossRef]
- Kumaragurubaran, S.; Takekawa, S.; Nakamura, M.; Kitamura, K. Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures. J. Cryst. Growth 2006, 292, 332–336. [Google Scholar] [CrossRef]
- Ganesamoorthy, S.; Nakamura, M.; Takekawa, S.; Kumaragurubaran, S.; Terabe, K.; Kitamura, K. A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals. Mater. Sci. Eng. B 2005, 120, 125–129. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kitamura, K.; Suzuki, E.; Niwa, K. Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J. Cryst. Growth 1999, 197, 889–895. [Google Scholar] [CrossRef]
- Kumaragurubaran, S.; Takekawa, S.; Nakamura, M.; Kitamura, K. Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals. J. Cryst. Growth 2005, 285, 88–95. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, W.; Liu, J. Growth and characterization of near stoichiometric lithium tantalate crystals. Rare Metals Lett. 2007, 26, 23–26. [Google Scholar]
- Su, D.; Liu, H.; Yan, T. Near stoichiometric lithium tantalate crystals-growth techniques and composition testing methods. J. Synth. Cryst. 2011, 40, 528–572. [Google Scholar]
- Zhang, D.L.; Chen, B.; Yu, D.Y.; Pun, E.Y.B. Influence of factors on growth of off-congruent LiNbO3 single-crystal by li-rich/li-poor chemical vapor transport equilibration. Cryst. Growth Des. 2013, 13, 1793–1798. [Google Scholar] [CrossRef]
- Yang, J.; Mao, Q.; Shang, J.; Hao, H.; Li, Q.; Huang, C.; Zhang, L.; Sun, J. Preparation and characterization of thick stoichiometric lithium tantalate crystals by vapor transport equilibration method. Mater. Lett. 2018, 232, 150–152. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Xu, J.; Li, Q.; Shang, J.; Zhang, L.; Liu, S.; Huang, C. Twin defects in thick stoichiometric lithium tantalate crystals prepared by a vapor transport equilibration method. J. Cryst. Growth 2016, 433, 31–35. [Google Scholar] [CrossRef]
- Kostritskii, S.M.; Bourson, P.; Aillerie, M.; Fontana, M.; Kip, D. Quantitative evaluation of the electro-optic effect and second-order optical nonlinearity of lithium tantalate crystals of different compositions using Raman and infrared spectroscopy. Appl. Phys. B 2006, 82, 423–430. [Google Scholar] [CrossRef]
- Kostritskii, S.M.; Aillerie, M.; Bourson, P.; Kip, D. Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals. Appl. Phys. B 2009, 95, 125–130. [Google Scholar] [CrossRef]
- Yu, N.E.; Kurimura, S.; Nomura, Y.; Nakamura, M.; Kitamura, K.; Sakuma, J.; Otani, Y.; Shiratori, A. Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation. Appl. Phys. Lett. 2004, 84, 1662–1664. [Google Scholar] [CrossRef]
- Yu, N.E.; Kurimura, S.; Nomura, Y.; Kitamura, K. Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate. JPN J. Appl. Phys. 2004, 43, L1265. [Google Scholar] [CrossRef]
- Yu, N.E.; Kurimura, S.; Nakamura, M.; Nomura, Y.; Kitamura, K.; Sakuma, J.; Shiratori, A. Periodically Poled Stoichiometric LiTaO3 for Optical Parametric Oscillation. In Conference on Lasers and Electro-Optics; Optica Publishing Group: Washington, DC, USA, 2003. [Google Scholar]
- Getman, A.G.; Popov, S.V.; Taylor, J.R. 7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate. Appl. Phys. Lett. 2004, 85, 3026–3028. [Google Scholar] [CrossRef]
- Psaltis, D.; Burr, G.W. Holographic data storage. Computer 1998, 31, 52–60. [Google Scholar] [CrossRef]
- Barbastathis, G.; Psaltis, D. Volume holographic multiplexing methods. Hologr. Data Storage 2000, 76, 21–62. [Google Scholar]
- Steinberg, I.S.; Shepetkin, Y.A. Two-photon recording of microholograms in undoped lithium tantalate. Appl. Opt. 2008, 47, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.M.; Hu, H.; Chen, F.; Lu, F.; Zhang, J.H.; Liu, X.D.; Liu, J.T.; Shi, B.R. Damage profile and mode observation in LiTaO3 by low-energy H+ ions. Can. J. Phys. 2001, 79, 921–927. [Google Scholar] [CrossRef]
- Krätzig, E.; Buse, K. Two-Step processes and IR recording in photorefractive crystals. In Infrared Holography for Optical Communications: Techniques, Materials, and Devices; Springer: Berlin/Heidelberg, Germany, 2002; pp. 23–40. [Google Scholar]
- Bai, Y.; Neurgaonkar, R.; Kachru, R. High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers. Opt. Lett. 1997, 22, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Krätzig, E.; Orlowski, R. LiTaO3 as holographic storage material. Appl. Phys. 1978, 15, 133–139. [Google Scholar] [CrossRef]
- Nakamura, M.; Takekawa, S.; Terabe, K.; Kitamura, K.; Usami, T.; Nakamura, K.; Ito, H.; Furukawa, Y. Near-stoichiometric LiTaO3 for bulk quasi-phase-matched devices. Ferroelectrics 2002, 273, 199–204. [Google Scholar] [CrossRef]
- Liu, Y.; Kitamura, K.; Takekawa, S.; Nakamura, M.; Furukawa, Y.; Hatano, H. Nonvolatile two-color holographic recording in nondoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers. Appl. Phys. Lett. 2003, 82, 4218–4220. [Google Scholar] [CrossRef]
- Hsu, W.T.; Chen, Z.B.; You, C.A.; Huang, S.W.; Liu, J.P.; Lan, C.W. Growth and photorefractive properties of Mg, Fe co-doped near-stoichiometric lithium tantalate single crystals. Opt. Mater. 2010, 32, 1071–1076. [Google Scholar] [CrossRef]
- Rautiainen, J.; Okhotnikov, O.G.; Eger, D.; Zolotovskaya, S.A.; Fedorova, K.A.; Rafailov, E.U. Intracavity generation of 610 nm light by periodically poled near-stoichiometric lithium tantalate. Electron. Lett. 2009, 45, 1. [Google Scholar] [CrossRef]
- Li, L.; Zhang, B.; Romero, C.; de Aldana, J.R.V.; Wang, L.; Chen, F. Tunable violet radiation in a quasi-phase-matched periodically poled stoichiometric lithium tantalate waveguide by direct femtosecond laser writing. Results Phys. 2020, 19, 103373. [Google Scholar] [CrossRef]
- Antsygin, V.D.; Mamrashev, A.A.; Maximov, L.V.; Mikerin, S.L.; Minakov, F.A.; Nikolaev, N.A. Temperature Dependence of Terahertz Properties of Stoichiometric Lithium Tantalate. J. Infrared Millim. Terahertz Waves 2022, 43, 1–10. [Google Scholar] [CrossRef]
- Rowley, J.D.; Yang, S.; Ganikhanov, F. Power and tuning characteristics of a broadly tunable femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate. JOSA B 2011, 28, 1026–1036. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.; Cha, M.; Moon, H.S. Generation of bright visible photon pairs using a periodically poled stoichiometric lithium tantalate crystal. Opt. Express 2015, 23, 14203–14210. [Google Scholar] [CrossRef]
- Warder, P.; Layus, N. Selecting filters for challenging mobile applications worldwide. Microw. J. 2013, 56, 96. [Google Scholar]
- Campbell, C. Surface acoustic wave devices and their signal processing applications. J. Acoust. Soc. Am. 1991, 89, 1479–1480. [Google Scholar] [CrossRef]
- Dvoesherstov, M.Y.; Petrov, S.G.; Cherednik, V.I.; Chirimanov, A.P. The temperature coefficients of delay of surface acoustic waves in LGS and LGN crystals in a wide temperature range. Tech. Phys. 2001, 46, 346–347. [Google Scholar] [CrossRef]
- Gonzalez, M. Impact of Li Non-Stoichiometry on the Performance of Acoustic Devices on LiTaO3 and LiNbO3 Single Crystals. Ph.D. Thesis, Université de Franche-Comté, Besançon, France, 2016. [Google Scholar]
- Xiao, X.; Zhang, X.; Zhang, H.; Lei, Y.; Ma, T.; Wei, H.; Wei, T.; Zhang, S.; Li, W. Method of (Near) Stoichiometric Lithium Tantalate (LiTaO3) Crystal Growth by the Edge Defined Film Fed Growth (EFG). Method. Patent CN111549374A, 18 August 2020. [Google Scholar]
- Xiao, X.; Xu, Q.; Liang, S.; Zhang, H.; Ma, L.; Hai, L.; Zhang, X. Preparation, electrical, thermal and mechanical properties of black lithium tantalate crystal wafers. J. Mater. Sci. Mater. Electron. 2020, 31, 16414–16419. [Google Scholar] [CrossRef]
Coercive Field (V/m) | Curie Temperature (°C) | Domain Shape | Sound Velocity (m/s) | Thermal Conductivity W/(m·K) | Thermal Diffusivity (10−4 m2/s) | |
---|---|---|---|---|---|---|
CLT | 21,100 | 603 | triangle | 3294 | 4.67 | 0.0156 |
NSLT | 2000 | 693 | hexagon | 8.78 | 0.0288 |
Preparation Method | Advantage | Drawback |
---|---|---|
DCCZ method | 1. Uniform doping of crystals 2. Stoichiometry can be controlled | 1. Complex process 2. High production costs 3. The temperature field is difficult to control |
Cosolvent method | 1. Crystal composition closer to stoichiometric ratio | 1. Easy to introduce impurities |
VTE method | 1. Simple operation process 2. Low production cost | 1. Temperature has a significant impact on crystal structure 2. The crystal is very thin 3. Uneven distribution of Li ions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Si, J.; Liang, S.; Xu, Q.; Zhang, H.; Ma, L.; Yang, C.; Zhang, X. Preparation, Properties, and Applications of Near Stoichiometric Lithium Tantalate Crystals. Crystals 2023, 13, 1031. https://doi.org/10.3390/cryst13071031
Xiao X, Si J, Liang S, Xu Q, Zhang H, Ma L, Yang C, Zhang X. Preparation, Properties, and Applications of Near Stoichiometric Lithium Tantalate Crystals. Crystals. 2023; 13(7):1031. https://doi.org/10.3390/cryst13071031
Chicago/Turabian StyleXiao, Xuefeng, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang, and Xuefeng Zhang. 2023. "Preparation, Properties, and Applications of Near Stoichiometric Lithium Tantalate Crystals" Crystals 13, no. 7: 1031. https://doi.org/10.3390/cryst13071031
APA StyleXiao, X., Si, J., Liang, S., Xu, Q., Zhang, H., Ma, L., Yang, C., & Zhang, X. (2023). Preparation, Properties, and Applications of Near Stoichiometric Lithium Tantalate Crystals. Crystals, 13(7), 1031. https://doi.org/10.3390/cryst13071031