Assessment of the Interatomic Potentials of Beryllium for Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. MEAM Type Potential
2.2. Tersoff Potential
2.3. Finnis–Sinclair Type Potential
2.4. Simulation Setup
3. Results
3.1. Equations of States
3.1.1. Hydrostatic Compression
3.1.2. Thermal Expansion
3.2. Uniaxial Tensile Response
3.2.1. MEAM Type Potential
3.2.2. Tersoff Type Potential
3.2.3. Finnis–Sinclair Type Potential
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, L.; Liu, X.; Bao, S.; Zhang, J.; Zhong, J.; Ding, Y. Research Progress on Properties of Rare Metal Beryllium. Chin. J. Rare Met. 2023, 24, 292–302. [Google Scholar]
- Barabash, V.; Eaton, R.; Hirai, T.; Kupriyanov, I.; Nikolaev, G.; Wang, Z.; Liu, X.; Roedig, M.; Linke, J. Summary of beryllium qualification activity for ITER first-wall applications. Phys. Scr. 2011, T145, 014007. [Google Scholar] [CrossRef]
- Tolias, P. Analytical expressions for thermophysical properties of solid and liquid beryllium relevant for fusion applications. Nucl. Mater. Energy 2022, 31, 101195. [Google Scholar] [CrossRef]
- Vladimirov, P.V.; Chakin, V.P.; Dürrschnabel, M.; Gaisin, R.; Goraieb, A.; Gonzalez, F.A.H.; Klimenkov, M.; Rieth, M.; Rolli, R.; Zimber, N.; et al. Development and characterization of advanced neutron multiplier materials. J. Nucl. Mater. 2021, 543, 152593. [Google Scholar] [CrossRef]
- DiJulio, D.D.; Lee, Y.J.; Muhrer, G.; Herwig, K.W.; Iverson, E.B. Impact of crystallite size on the performance of a beryllium reflector. J. Neutron Res. 2020, 22, 275–279. [Google Scholar] [CrossRef]
- Muhammad, S.T.; Ahmad, S.-u.-I.; Chaudri, K.S.; Ahmad, A. Beryllium as reflector of MNSR. Ann. Nucl. Energy 2008, 35, 1708–1712. [Google Scholar] [CrossRef]
- Hu, N.; Tanaka, H.; Akita, K.; Kakino, R.; Aihara, T.; Nihei, K.; Ono, K.; Baxter, D.; Gutberlet, T.; Kino, K.; et al. Accelerator based epithermal neutron source for clinical boron neutron capture therapy. J. Neutron Res. 2022, 24, 359–366. [Google Scholar] [CrossRef]
- Magni, C.; Postuma, I.; Ferrarini, M.; Protti, N.; Fatemi, S.; Gong, C.; Anselmi-Tamburini, U.; Vercesi, V.; Battistoni, G.; Altieri, S.; et al. Design of a BNCT irradiation room based on proton accelerator and beryllium target. Appl. Radiat. Isot. 2020, 165, 109314. [Google Scholar] [CrossRef] [PubMed]
- Pajuste, E.; Kizane, G.; Avotiņa, L.; Zariņš, A. Behaviour of neutron irradiated beryllium during temperature excursions up to and beyond its melting temperature. J. Nucl. Mater. 2015, 465, 293–300. [Google Scholar] [CrossRef]
- Simos, N.; Elbakhshwan, M.; Zhong, Z.; Camino, F. Proton irradiation effects on beryllium—A macroscopic assessment. J. Nucl. Mater. 2016, 479, 489–503. [Google Scholar] [CrossRef]
- Peng, Q.; Zhang, X.; Hung, L.; Carter, E.A.; Lu, G. Quantum simulation of materials at micron scales and beyond. Phys. Rev. B 2008, 78, 054118. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, Q.; Lu, G. Quantum mechanical modeling of hydrogen assisted cracking in aluminum. Phys. Rev. B 2013, 88, 104109. [Google Scholar] [CrossRef]
- Peng, Q.; Ma, Z.; Cai, S.; Zhao, S.; Chen, X.; Cao, Q. Atomistic Insights on Surface Quality Control via Annealing Process in AlGaN Thin Film Growth. Nanomaterials 2023, 13, 1382. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron. Nat. Commun. 2018, 9, 4880. [Google Scholar] [PubMed]
- Ganchenkova, M.G.; Vladimirov, P.V.; Borodin, V.A. Vacancies, interstitials and gas atoms in beryllium. J. Nucl. Mater. 2009, 386–388, 79–81. [Google Scholar] [CrossRef]
- Agrawal, A.; Mishra, R.; Ward, L.; Flores, K.M.; Windl, W. An embedded atom method potential of beryllium. Model. Simul. Sci. Eng. 2013, 21, 085001. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef]
- Hu, W.Y.; Zhang, B.W.; Huang, B.Y.; Gao, F.; Bacon, D.J. Analytic modified embedded atom potentials for HCP metals. J. Phys. Condens. Matter. 2001, 13, 1193–1213. [Google Scholar] [CrossRef]
- Baskes, M.I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 1992, 46, 2727–2742. [Google Scholar] [CrossRef] [PubMed]
- Finnis, M.W.; Sinclair, J.E. A simple empirical N-body potential for transition metals. Philos. Mag. A 1984, 50, 45–55. [Google Scholar] [CrossRef]
- Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Baskes, M.I. Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 1997, 50, 152–158. [Google Scholar] [CrossRef]
- Baskes, M.I.; Johnson, R.A. Modified embedded atom potentials for HCP metals. Model. Simul. Mater. Sci. Eng. 1994, 2, 147–163. [Google Scholar] [CrossRef]
- Lee, B.-J.; Ko, W.-S.; Kim, H.-K.; Kim, E.-H. The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. Calphad 2010, 34, 510–522. [Google Scholar] [CrossRef]
- Dremov, V.V.; Karavaev, A.V.; Kutepov, A.L.; Soulard, L.; Elert, M.; Furnish, M.D.; Chau, R.; Holmes, N.; Nguyen, J. Molecular Dynamics Simulation of Thermodynamic and Mechanical Properties of Be and Mg. In Proceedings of the Conference of the American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter, Waikoloa, HI, USA, 24–29 June 2007. [Google Scholar]
- Bjorkas, C.; Juslin, N.; Timko, H.; Vortler, K.; Nordlund, K.; Henriksson, K.; Erhart, P. Interatomic potentials for the Be-C-H system. J. Phys. Condens. Matter 2009, 21, 445002. [Google Scholar] [CrossRef]
- Dai, X.D.; Kong, Y.; Li, J.H.; Liu, B.X. Extended Finnis–Sinclair potential for bcc and fcc metals and alloys. J. Phys. Condens. Matter 2006, 18, 4527–4542. [Google Scholar] [CrossRef]
- Igarashi, M.; Khantha, M.; Vitek, V. N-body interatomic potentials for hexagonal close-packed metals. Philos. Mag. B 2006, 63, 603–627. [Google Scholar] [CrossRef]
- Migliori, A.; Ledbetter, H.; Thoma, D.J.; Darling, T.W. Beryllium’s monocrystal and polycrystal elastic constants. J. Appl. Phys. 2004, 95, 2436–2440. [Google Scholar] [CrossRef]
- Petzow, G.; Aldinger, F.; Jönsson, S.; Welge, P.; van Kampen, V.; Mensing, T.; Brüning, T. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ming, l.C.; Manghnani, M.H. Isotherma compression and phase-transition in beryllium to 28.3 GPa. J. Phys. F Met. Phys. 1984, 14, L1–L8. [Google Scholar] [CrossRef]
- Gordon, P. A High Temperature Precision X-ray Camera: Some Measurements of the Thermal Coefficients of Expansion of Beryllium. J. Appl. Phys. 1949, 20, 908–917. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Wu, B.; Deng, W.; Li, S.; Jin, J.; Peng, Q. Assessment of the Interatomic Potentials of Beryllium for Mechanical Properties. Crystals 2023, 13, 1330. https://doi.org/10.3390/cryst13091330
Yang C, Wu B, Deng W, Li S, Jin J, Peng Q. Assessment of the Interatomic Potentials of Beryllium for Mechanical Properties. Crystals. 2023; 13(9):1330. https://doi.org/10.3390/cryst13091330
Chicago/Turabian StyleYang, Chengzhi, Bin Wu, Wenmin Deng, Shuzhen Li, Jianfeng Jin, and Qing Peng. 2023. "Assessment of the Interatomic Potentials of Beryllium for Mechanical Properties" Crystals 13, no. 9: 1330. https://doi.org/10.3390/cryst13091330
APA StyleYang, C., Wu, B., Deng, W., Li, S., Jin, J., & Peng, Q. (2023). Assessment of the Interatomic Potentials of Beryllium for Mechanical Properties. Crystals, 13(9), 1330. https://doi.org/10.3390/cryst13091330