Structural and Optical Properties of SrTiO3-Based Ceramics for Energy and Electronics Applications
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Pai, Y.Y.; Tylan–Tyler, A.; Irvin, P.; Levy, J. Physics of SrTiO3-based heterostructures and nanostructures: A review. Rep. Prog. Phys. 2018, 81, 036503. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Cosgriff, M.P.; Zhang, Q.; Callori, S.J.; Adams, B.W.; Dufresne, E.M.; Dawber, M.; Evans, P.G. Field–dependent domain distortion and interlayer polarization distribution in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 2013, 110, 047601. [Google Scholar] [CrossRef]
- Neaton, J.; Rabe, K. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 2003, 82, 1586–1588. [Google Scholar] [CrossRef]
- Avcıoǧlu, C.; Avcıoǧlu, S.; Bekheet, M.F.; Gurlo, A. Photocatalytic overall water splitting by SrTiO3: Progress report and design strategies. ACS Appl. Energy Mater. 2023, 6, 1134–1154. [Google Scholar] [CrossRef]
- Phoon, B.L.; Lai, C.W.; Juan, J.C.; Show, P.L.; Chen, W.H. A review of synthesis and morphology of SrTiO3 for energy and other applications. Int. J. Energy Res. 2019, 43, 5151–5174. [Google Scholar] [CrossRef]
- Koumoto, K.; Wang, Y.F.; Zhang, R.Z.; Kosuga, A.; Funahashi, R. Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 2010, 40, 363–394. [Google Scholar] [CrossRef]
- Li, Y.; Triveno, G.B.; Lin, X.; Guan, P.; Chu, D. Morphology control and applications of SrTiO3 based nanomaterials. Curr. Phys. Chem. 2017, 7, 191–203. [Google Scholar] [CrossRef]
- Ekuma, C.E.; Jarrell, M.; Moreno, J.; Bagayoko, D. First principle electronic, structural, elastic, and optical properties of strontium titanate. AIP Adv. 2012, 2, 012189. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Zou, T.; Zhang, S.; Yaer, X.; Ding, N.; Liu, C.; Miao, L.; Li, Y.; Wu, Y. High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J. Mater. Chem. C. 2015, 3, 11406–11411. [Google Scholar] [CrossRef]
- Shen, X.; Kawabata, T.; Sasaki, K. Redox-stable Sr0.9La0.1TiO3-supported SOFC single cells. Int. J. Hydrogen Energy 2017, 42, 6941–6949. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, N.; Chuang, K.T.; Luo, J. Progress in La–doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 2014, 4, 118–131. [Google Scholar] [CrossRef]
- Schultz, A.M.; Brown, T.D.; Ohodnicki, P.R., Jr. Optical and chemi–resistive sensing in extreme environments: La–doped SrTiO3 films for hydrogen sensing at high temperatures. J. Phys. Chem. C 2015, 119, 6211–6220. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Hei, Q.; Xui, R.; Chen, D.; Xu, X.; Hu, H. Review of doping SrTiO3 for photocatalytic applications. Bull. Mater. Sci. 2023, 46, 6. [Google Scholar] [CrossRef]
- Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K. La, Al–codoped SrTiO3 as a photocatalyst in overall water splitting: Significant surface engineering effects on defect engineering. ACS Catal. 2021, 11, 11429–11439. [Google Scholar] [CrossRef]
- Yahya, M.; Ismail, M. Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2. J. Energy Chem. 2019, 28, 46–53. [Google Scholar] [CrossRef]
- Gholamrezaei, S.; Salavati-Niasari, M. Natural sensitizer for low cost dye sensitized solar cell based on strontium titanate nanoparticles. J. Mat. Sci. Mat. Electr. 2016, 27, 2467–2472. [Google Scholar] [CrossRef]
- Chen, C.; Dai, Q.; Miao, C.; Xu, L.; Song, H. Strontium titanate nanoparticles as the photoanode for CdS quantum dot sensitized solar cells. RSC Adv. 2015, 5, 4844–4852. [Google Scholar] [CrossRef]
- Popovici, M.; Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.L.; Van Elshocht, S.; Jurczak, M. Low leakage Ru-strontium titanate–Ru metal–insulator–metal capacitors for sub-20 nm technology node in dynamic random access memory. Appl. Phy. Lett. 2014, 104, 082908. [Google Scholar] [CrossRef]
- Tang, H.; Sodano, H.A. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 2013, 13, 1373–1379. [Google Scholar] [CrossRef]
- Tarun, M.C.; Selim, F.A.; McCluskey, M.D. Persistent photoconductivity in strontium titanate. Phys. Rev. Lett. 2013, 111, 187403. [Google Scholar] [CrossRef]
- Chow, C.L.; Tan, P.Y.; Tan, O.K.; Tse, M.S.; Phuan, Y.S. Oxygen sensing properties of strontium titanate ferrite composite films at low temperature. Sensor Lett. 2011, 9, 343–347. [Google Scholar] [CrossRef]
- Nie, F.; Wang, J.; Fang, H.; Ma, S.; Wu, F.; Zhao, W.; Wei, S.; Wang, Y.; Zhao, L.; Yan, S. Ultrathin SrTiO3-based oxide memristor with both drift and diffusive dynamics as versatile synaptic emulators for neuromorphic computing. Mater. Futures 2023, 2, 035302. [Google Scholar] [CrossRef]
- Lu, J.; Deng, Z.; Ye, Q.; Zheng, Z.; Yao, J.; Yang, G. Promoting the performance of 2D material photodetectors by dielectric engineering. Small Methods 2022, 6, 210104. [Google Scholar] [CrossRef]
- Ho, T.L.; Ding, K.; Lyapunov, N.; Suen, C.H.; Wong, L.W.; Zhao, J.; Yang, M.Y.; Zhou, X.; Dai, J.Y. Multi-level resistive switching in SnSe/SrTiO3 heterostructure based memristor device. Nanomaterials 2022, 12, 2128. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2005, 9, 034106. [Google Scholar]
- Okuda, T.; Nakanishi, K.; Miyasaka, S.; Tokura, Y. Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < x < 0.1). Phys. Rev. B 2001, 63, 113104. [Google Scholar]
- Yoon, S.; Kwon, O.J.; Ahn, S.; Kim, J.Y.; Koo, H.; Bae, S.H.; Cho, J.Y.; Kim, J.S.; Park, C. The effect of grain size and density on the thermoelectric properties of Bi2Te3-PbTe compounds. J. Electron. Mater. 2013, 42, 3390–3396. [Google Scholar] [CrossRef]
- Bernik, S.; Daneu, N.; Rečnik, A. Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics. J. Eur. Ceram. Soc. 2004, 24, 3703–3708. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, D.; Wu, X.; Yin, K.; Yan, K. Drag effects of solute and second phase distributions on the grain growth kinetics of pre-extruded Mg-6Zn alloy. J. Mater. Sci. Technol. 2016, 32, 1260–1266. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Q.Y.; Wang, X.H.; Kang, H.J.; Yaer, X.; Li, J.B.; Wang, T.M.; Miao, L.; Wang, J. First-principles calculations and high thermoelectric performance of La-Nb doped SrTiO3 ceramics. J. Mater. Chem. A 2019, 7, 236–247. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, C.L.; Su, W.B.; Liu, J.; Sun, Y.; Peng, H.; Mei, L.M. Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J. Am. Ceram. Soc. 2011, 94, 838–842. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Blokhin, E.; Gryaznov, D.; Kotomin, E.A.; Maier, J. Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane–wave study. Phys. Rev. B 2011, 83, 134108. [Google Scholar] [CrossRef]
- Pronin, I.A.; Averin, I.A.; Karmanov, A.A.; Yakushova, N.D.; Komolov, A.S.; Lazneva, E.F.; Sychev, M.M.; Moshnikov, V.A.; Korotcenkov, G. Control over the surface properties of zinc oxide powders via combining mechanical, electron beam, and thermal processing. Nanomaterials 2022, 12, 1924. [Google Scholar] [CrossRef] [PubMed]
- Komolov, A.S.; Lazneva, E.F.; Gerasimova, N.B.; Panina, Y.A.; Sobolev, V.S.; Koroleva, A.V.; Pshenichnyuk, S.A.; Asfandiarov, N.L.; Modelli, A.; Handke, B.; et al. Conduction band electronic states of ultrathin layers of thiophene/ phenylene co-oligomers on an oxidized silicon surface. J. Electron Spectrosc. Relat. Phenom. 2019, 235, 40–45. [Google Scholar] [CrossRef]
- Comini, N.; Huthwelker, T.; Diulus, J.T.; Osterwalder, J.; Novotny, Z. Factors influencing surface carbon contamination in ambient-pressure X-ray photoelectron spectroscopy experiments. J. Vac. Sci. Technol. A 2021, 39, 043203. [Google Scholar] [CrossRef]
- Wu, Q.H.; Liu, M.; Jaegermann, W. X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater. Lett. 2005, 59, 1980–1983. [Google Scholar] [CrossRef]
- Shichi, Y.; Inoue, Y.; Munakata, F.; Yamanaka, M. X-ray photoelectron spectroscopy analysis of Bi2Sr2Ca1–xYxCu2Oy. Phys. Rev. B 1990, 42, 939–942. [Google Scholar] [CrossRef]
- Márquez–Herrera, A.; Ovando–Medina, V.M.; Castillo-Reyes, B.E.; Zapata–Torres, M.; Meléndez–Lira, M.; González–Castañeda, J. Facile synthesis of SrCO3-Sr(OH)2/PPy nanocomposite with enhanced photocatalytic activity under visible light. Materials 2016, 9, 30. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.; Shim, Y.S.; Hwang, D.; Son, C.S. Structure and photoluminescence properties of rare–earth (Dy3+, Tb3+, Sm3+)-doped BaWO4 phosphors synthesized via co–precipitation for anti–counterfeiting. Materials 2020, 13, 4165. [Google Scholar] [CrossRef]
- Munirathnam, K.; Dillip, G.R.; Chaurasia, S.; Joo, S.W.; Raju, D.P.; Sushmae, N.J. Investigations on surface chemical analysis using X–ray photoelectron spectroscopy and optical properties of Dy3+-doped LiNa3P2O7 phosphor. J. Mol. Struct. 2016, 1118, 117–123. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Gavrilova, T.A.; Grivel, J.C.; Kesler, V.G.; Troitskaia, I.B. Electronic structure of layered ferroelectric high-k titanate Pr2Ti2O7. J. Solid State Chem. 2012, 195, 125–131. [Google Scholar] [CrossRef]
- Thind, S.S.; Wu, G.; Tian, M.; Chen, A. Significant enhancement in the photocatalytic activity of N, W co–doped TiO2 nanomaterials for promising environmental applications. Nanotechnology 2012, 23, 475706. [Google Scholar] [CrossRef] [PubMed]
- Luciu, I.; Bartali, R.; Laidani, N. Influence of hydrogen addition to an Ar plasma on the structural properties of TiO2−x thin films deposited by RF sputtering. J. Phys. D 2012, 45, 345302. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Populoh, S.; Patrício, S.G.; Thiel, P.; Ferro, M.C.; Fagg, D.P.; Frade, J.R.; Weidenkaff, A. Design of SrTiO3-based thermoelectrics by tungsten substitution. J. Phys. Chem. C 2015, 119, 4466–4478. [Google Scholar] [CrossRef]
- Ekren, D.; Azough, F.; Gholinia, A.; Day, S.J.; Hernandez–Maldonado, D.; Kepaptsoglou, D.M.; Ramasse, Q.M.; Freer, R. Enhancing the thermoelectric power factor of Sr0.9Nd0.1TiO3 through control of the nanostructure and microstructure. J. Mater. Chem. A 2018, 6, 24928–24939. [Google Scholar] [CrossRef]
- Liu, D.Q.; Zhang, Y.W.; Kang, H.J.; Li, J.L.; Yang, X.; Wang, T.M. Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics. Chin. Phys. B 2018, 27, 047205. [Google Scholar] [CrossRef]
- Park, K.; Kim, D.H.; Gwon, S.Y.; Jeon, E.C. High thermoelectric performance of n–type SrTiO3 by Dy and Nb co-doping. Inorg. Chem. Comm. 2024, 169, 113041. [Google Scholar] [CrossRef]
- Zhang, H.; Guashuai, M.; Xingping, M.; Bei, W. Fabrication and photocatalytic property of one–dimensional SrTiO3/TiO2-xNx nanostructures. Int. J. Photoenergy 2013, 2013, 1–6. [Google Scholar]
- Devi, N.Y.; Rajasekaran, P.; Vijayakumar, K.; Nedunchezhian, A.S.A.; Sidharth, D.; Anbalagan, G.; Arivanandhan, M.; Jayavel, R. Enhancement of thermoelectric power factor of hydrothermally synthesised SrTiO3 nanostructures. Mater. Res. Exp. 2020, 7, 015094. [Google Scholar] [CrossRef]
- Kok, D.J.; Irmscher, K.; Naumann, M.; Guguschev, C.; Galazka, Z.; Uecker, R. Temperature–dependent optical absorption of SrTiO3. Phys. Status Solidi A 2015, 212, 1880–1887. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Mochizuki, S.; Fujishiro, F.; Minami, S. Photoluminescence and reversible photo–induced spectral change of SrTiO3. J. Phys. Condens. Matter 2005, 17, 923–948. [Google Scholar] [CrossRef]
- Yamada, Y.; Kanemitsu, Y. Band-to-band photoluminescence in SrTiO3. Phys. Rev. B 2010, 82, 121103. [Google Scholar] [CrossRef]
D5/N5 sample | D5/N10 sample | D10/N5 sample | D10/N10 sample | |
---|---|---|---|---|
Crystal structure | Tetragonal | Tetragonal | Tetragonal | Tetragonal |
Space group | I4/mcm | I4/mcm | I4/mcm | I4/mcm |
Lattice parameter | ||||
a (Å) | 5.5241 | 5.5352 | 5.5220 | 5.5336 |
c (Å) | 7.8243 | 7.8375 | 7.8241 | 7.8374 |
α = β = γ (°) | 90.0 | 90.0 | 90.0 | 90.0 |
Volume (Å3) | 238.76 | 240.13 | 238.58 | 239.99 |
Reliability factor | ||||
Rexp (%) | 7.14 | 6.23 | 7.77 | 6.29 |
Rexp (%) | 4.17 | 4.19 | 4.45 | 4.41 |
χ2 | 2.94 | 2.21 | 3.05 | 2.03 |
D5/N5 sample | D5/N10 sample | D10/N5 sample | D10/N10 sample | |
---|---|---|---|---|
Sr−O(1) distance (Å) | 2.6458 | 2.6630 | 2.6139 | 2.6522 |
Sr−O(2) distance (Å) | 2.7620 | 2.7676 | 2.7610 | 2.7668 |
Ti−O(1) distance (Å) | 1.9561 | 1.9594 | 1.9560 | 1.9645 |
Ti−O(2) distance (Å) | 1.9606 | 1.9630 | 1.9645 | 1.9637 |
Ti−Ti distance (Å) | 3.9061 | 3.9140 | 3.9046 | 3.9128 |
D5/N5 sample | D5/N10 sample | D10/N5 sample | D10/N10 sample | |
---|---|---|---|---|
Band-gap energy (eV) | 2.9 | 2.8 | 2.8 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Gwon, S.; Park, K.; Jeon, E.-C. Structural and Optical Properties of SrTiO3-Based Ceramics for Energy and Electronics Applications. Crystals 2024, 14, 942. https://doi.org/10.3390/cryst14110942
Kim D, Gwon S, Park K, Jeon E-C. Structural and Optical Properties of SrTiO3-Based Ceramics for Energy and Electronics Applications. Crystals. 2024; 14(11):942. https://doi.org/10.3390/cryst14110942
Chicago/Turabian StyleKim, Donghoon, Soyeon Gwon, Kyeongsoon Park, and Eui-Chan Jeon. 2024. "Structural and Optical Properties of SrTiO3-Based Ceramics for Energy and Electronics Applications" Crystals 14, no. 11: 942. https://doi.org/10.3390/cryst14110942
APA StyleKim, D., Gwon, S., Park, K., & Jeon, E.-C. (2024). Structural and Optical Properties of SrTiO3-Based Ceramics for Energy and Electronics Applications. Crystals, 14(11), 942. https://doi.org/10.3390/cryst14110942