Properties of Antiferroelectric Mixtures Differing in the Amount of Added Racemate
Abstract
:1. Introduction
2. Compositions of Mixtures
3. Results and Discussion
3.1. Mesomorphic Properties of Mixtures
3.2. Helical Pitch of Mixtures
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagerwall, J.P.F.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- D’have, K.; Rudquist, P.; Lagerwall, S.T.; Pauwels, H.; Drzewiński, W.; Dąbrowski, R. Solution of the dark state problem in antiferroelectric liquid crystal displays. Appl. Phys. Lett. 2000, 76, 3528–3530. [Google Scholar] [CrossRef]
- Castillo, P.L.; Otón, J.M.; Dąbrowski, R.; Lara, A.; Quintana, X.; Bennis, N. Electrooptics of antiferroelectric orthoconic reflective displays. Proc. SPIE 2004, 5565, 284–289. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Giesselmann, F. Current topics in smectic liquid crystal research. ChemPhysChem 2006, 7, 20–45. [Google Scholar] [CrossRef]
- Clark, N.A.; Lagerwall, S.T. Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 1980, 36, 899–901. [Google Scholar] [CrossRef]
- Otón, J.M.; Quintana, X.; Castillo, P.L.; Lara, A.; Urruchi, V.; Bennis, N. Antiferroelectric liquid crystal displays. Opto-Electr. Rev. 2004, 12, 263–269. [Google Scholar]
- Dąbrowski, R.; Kula, P.; Raszewski, Z.; Piecek, W.; Otón, J.M.; Spadło, A. New orthoconic antiferroelectrics useful for applications. Ferroelectr. 2010, 395, 116–132. [Google Scholar] [CrossRef]
- Fitas, J.; Marzec, M.; Tykarska, M.; Wróbel, S.; Dąbrowski, R. Ferroelectric liquid crystal for use in a new generation of LCDs. Acta Phys. Pol. A 2013, 124, 954–958. [Google Scholar] [CrossRef]
- Meyer, R.B. Ferroelectric liquid crystals; a review. Mol. Cryst. Liq. Cryst. 1977, 40, 33–48. [Google Scholar] [CrossRef]
- Fukuda, A.; Takanishi, Y.; Isozaki, T.; Ishikawa, K.; Takezoe, H. Antiferroelectric chiral smectic liquid crystals. J. Mat. Chem. 1994, 4, 997–1016. [Google Scholar] [CrossRef]
- Chandani, A.D.L.; Górecka, E.; Ouchi, Y.; Takezoe, H.; Fukuda, A. Antiferroelectric chiral smectic phases responsible for the tristable switching in MHPOBC. Jap. J. Appl. Phys. 1989, 28, L1265–L1268. [Google Scholar] [CrossRef]
- Żurowska, M.; Morawiak, P.; Piecek, W.; Czerwiński, M.; Spadło, A.; Bennis, N. A new mesogenic mixture with antiferroelectric phase only at a broad temperature range. Liq. Cryst. 2016, 43, 1365–1374. [Google Scholar] [CrossRef]
- Wang, J.; Bergquist, L.; Hwang, J.-I.; Kim, K.-J.; Lee, J.-H.; Hegmann, T.; Jákli, A. Wide temperature-range, multi-component, optically isotropic antiferroelectric bent-core liquid crystal mixtures for display applications. Liq. Cryst. 2018, 45, 333–340. [Google Scholar] [CrossRef]
- Agrahari, A.; Nautiyal, V.K.; Vimal, T.; Pandey, S.; Kumar, S.; Manohar, R. Modification in different physical parameters of orthoconic antiferroelectric liquid crystal mixture via the dispersion of hexanethiol capped silver nanoparticles. J. Mol. Liq. 2021, 332, 115840. [Google Scholar] [CrossRef]
- Mykytyuk, Z.M.; Barylo, H.I.; Kremer, I.P.; Kachurak, Y.M. Sensitive liquid crystal composites for optical sensors. Mol. Cryst. Liq. Cryst. 2024, 768, 1–8. [Google Scholar] [CrossRef]
- Bubnov, A.; Tykarska, M.; Hamplová, V.; Kurp, K. Tuning the phase diagrams: The miscibility studies of multilactate liquid crystalline compounds. Phase Trans. 2016, 89, 885–893. [Google Scholar] [CrossRef]
- Fitas, J.; Marzec, M.; Szymkowiak, M.; Jaworska-Gołąb, T.; Deptuch, A.; Tykarska, M.; Kurp, K.; Żurowska, M.; Bubnov, A. Mesomorphic, electro-optic and structural properties of binary liquid crystalline mixtures with ferroelectric and antiferroelectric liquid crystalline behaviour. Phase Trans. 2018, 91, 1017–1026. [Google Scholar] [CrossRef]
- Czerwiński, M.; Tykarska, M. Helix parameters in bi- and multicomponent mixtures composed of orthoconic antiferroelectric liquid crystals with three ring molecular core. Liq. Cryst. 2014, 41, 850–860. [Google Scholar] [CrossRef]
- Knapkiewicz, M.; Robakowska, M.; Rachocki, A. Thermal stabilization of the smectic-Cα* phase by doping with photo-active reactive mesogen. J. Mol. Liq. 2022, 361, 119552. [Google Scholar] [CrossRef]
- Tomczyk, W.; Marzec, M.; Juszyńska-Gałązka, E.; Węgłowska, D. Mesomorphic and physicochemical properties of liquid crystal mixture composed of chiral molecules with perfluorinated terminal chains. J. Mol. Struct. 2017, 1130, 503–510. [Google Scholar] [CrossRef]
- Debnath, A.; Mandal, P.K. Effect of fluorination on the phase sequence, dielectric and electro-optical properties of ferroelectric and antiferroelectric mixtures. Liq. Cryst. 2017, 44, 2192–2202. [Google Scholar] [CrossRef]
- Czerwiński, M.; de Blas, M.G.; Bennis, N.; Herman, J.; Dmochowska, E.; Otón, J.M. Polymer stabilized highly tilted antiferroelectric liquid crystals—The influence of monomer structure and phase sequence of base mixtures. J. Mol. Liq. 2020, 327, 114869. [Google Scholar] [CrossRef]
- Shi, F.; Han, F.; Zhang, W.; Yang, Y.; Li, H. Color-tunable circularly polarized luminescence from liquid crystalline polymer networks. Dyes Pigm. 2024, 222, 111910. [Google Scholar] [CrossRef]
- Ma, J.; Xuan, L. Towards nanoscale molecular switch-based liquid crystal displays. Displays 2013, 34, 293–300. [Google Scholar] [CrossRef]
- Lalik, S.; Deptuch, A.; Fryń, P.; Jaworska-Gołąb, T.; Węgłowska, D.; Marzec, M. Physical properties of new binary ferroelectric mixture. J. Mol. Liq. 2019, 274, 540–549. [Google Scholar] [CrossRef]
- Milewska, K.; Drzewiński, W.; Czerwiński, M.; Dąbrowski, R.; Piecek, W. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase. Mat. Chem. Phys. 2016, 171, 33–38. [Google Scholar] [CrossRef]
- Hird, M. Ferroelectricity in liquid crystals—Materials, properties and applications. Liq. Cryst. 2011, 38, 1467–1493. [Google Scholar] [CrossRef]
- Dardas, D. Tuning the electro-optic and viscoelastic properties of ferroelectric liquid crystalline materials. Rheo. Acta 2019, 58, 193–201. [Google Scholar] [CrossRef]
- Piecek, W.; Perkowski, P.; Raszewski, Z.; Morawiak, P.; Żurowska, M.; Dąbrowski, R.; Czupryński, K. Long Pitch Orthoconic Antiferroelectric Binary Mixture for Display Applications. Mol. Cryst. Liq. Cryst. 2010, 525, 160–172. [Google Scholar] [CrossRef]
- Perkowski, P.; Ogrodnik, K.; Piecek, W.; Raszewski, Z.; Żurowska, M.; Dąbrowski, R. High frequency mode in new antiferroelectric mixture. Mol. Cryst. Liq. Cryst. 2010, 525, 50–56. [Google Scholar] [CrossRef]
- Perkowski, P.; Piecek, W.; Raszewski, Z.; Ogrodnik, K.; Żurowska, M.; Dąbrowski, R.; Kędzierski, J. Precise dielectric spectroscopy of a long pitch orthoconic antiferroelectric working mixture. Mol. Cryst. Liq. Cryst. 2011, 541, 191–200. [Google Scholar] [CrossRef]
- Chełstowska, A.; Czerwiński, M.; Tykarska, M.; Bennis, N. The influence of antiferroelectric compounds on helical pitch of orthoconic W-1000 mixture. Liq. Cryst. 2014, 41, 812–820. [Google Scholar] [CrossRef]
- Ogrodnik, K.; Perkowski, P.; Raszewski, Z.; Piecek, W.; Żurowska, M.; Dąbrowski, R.; Jaroszewicz, L. Dielectric Measurements of Orthoconic Antiferroelectric Liquid Crystal Mixtures. Mol. Cryst. Liq. Cryst. 2011, 547, 54–64. [Google Scholar] [CrossRef]
- Morawiak, P.; Żurowska, M.; Piecek, W. A Long Pitch Orthoconic Antiferroelectric Mixture Modified by Isomeric and Racemic Homostructural Dopants. Liq. Cryst. 2018, 45, 1451–1459. [Google Scholar] [CrossRef]
- Piecek, W.; Dąbrowski, R.; Morawiak, P.; Żurowska, M.; Jaroszewicz, L. The orthoconic antiferroelectric smectic liquid crystals and their engineering by doping with homo- and heterostructural compounds. Phase Trans. 2012, 85, 910–929. [Google Scholar] [CrossRef]
- Żurowska, M.; Dąbrowski, R.; Dziaduszek, J.; Skrzypek, K.; Filipowicz, M.; Rejmer, W.; Czupryński, K.; Bennis, N.; Otón, J.M. Influence of alkoxy chain length and fluorosubstitution on mesogenic and spectral properties of high tilted antiferroelectric esters. J. Mat. Chem. 2011, 21, 2144–2153. [Google Scholar] [CrossRef]
- Urbańska, M.; Dziaduszek, J.; Strzeżysz, O.; Szala, M. Synclinic and anticlinic properties of (R,S) 4′-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy)heptyl-1-oxy]benzoates. Phase Trans. 2019, 92, 657–666. [Google Scholar] [CrossRef]
- Dardas, D.; Kuczyński, W. Non-linear electrooptical effects in chiral liquid crystals. Opto-Electr. Rev. 2004, 12, 277–280. [Google Scholar]
- Raszewski, Z.; Kędzierski, J.; Perkowski, P.; Piecek, W.; Rutkowska, J.; Kłosowicz, S.; Zieliński, J. Refractive indices of the MHPB(H)PBC and MHPB(F)PBC antiferroelectric liquid crystals. Ferroelectrics 2002, 276, 289–300. [Google Scholar] [CrossRef]
- Urbańska, M.; Szala, M. Synthesis, Mesomorphic Properties and Application of (R,S)-1-Methylpentyl 4’-Hydroxybiphenyl-4-carboxylate Derivatives. Crystals 2022, 12, 1710. [Google Scholar] [CrossRef]
- Verma, R.; Dąbrowski, R.; Żurowska, M.; Dhar, R. Enhancement of the properties and mesophases stability after the electron beam irradiation on a racemic anti-ferroelectric liquid crystalline mixture. Liq. Cryst. 2016, 43, 606–614. [Google Scholar] [CrossRef]
- Żurowska, M.; Dąbrowski, R.; Dziaduszek, J.; Rejmer, W.; Czupryński, K.; Raszewski, Z.; Piecek, W. Comparison of Racemic and Enantiomeric 4′-(1-Methylheptyloxycarbonyl)Biphenyl-4-yl 4-[3-(2,2,3,3,4,4,4-Heptafluorobutoxy)Prop-1-Oxy]Benzoates. Mol. Cryst. Liq. Cryst. 2010, 525, 219–225. [Google Scholar] [CrossRef]
- Guo, J.; Xue, X.; Li, F.; Zhao, M.; Xing, Y.; Song, Y.; Long, C.; Zhao, T.; Liu, Y.; Tang, Z. Modulation of the assembly fashion among metal–organic frameworks for enantioretentive epoxide activation. Nanoscale Horiz. 2024, 9, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhen, Y.; Yu, W.; Wang, Y.; Jin, T.; Pan, X.; Loh, K.P.; Chen, W. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat 2021, 2, 88–98. [Google Scholar] [CrossRef]
- Guo, J.; Duan, Y.; Jia, Y.; Zhao, Z.; Gao, X.; Liu, P.; Li, F.; Chen, H.; Ye, Y.; Liu, Y.; et al. Biomimetic chiral hydrogen-bonded organic-inorganic frameworks. Nat. Comm. 2024, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Burmistrov, V.; Novikov, I.; Aleksandriiskii, V.; Batrakova, A.; Belykh, D.; Startseva, O.; Koifman, O.I. Chiral induction of helical mesophase by amphiphilic chlorin e6 derivatives and their metal complexes: Effect of chiral and achiral aliphatic chains. J. Mol. Liq. 2024, 396, 123957. [Google Scholar] [CrossRef]
- Rapeenun, P.; Gerard, C.J.J.; Pinètre, C.; Cartigny, Y.; Tinnemans, P.; de Gelder, R.; Flood, A.E.; ter Horst, J.H. Searching for Conglomerate Cocrystals of the Racemic Compound Praziquantel. Cryst. Growth Des. 2024, 24, 480–490. [Google Scholar] [CrossRef]
- Kovač, J.; Vargas, M.; Keiser, J. In vitro and in vivo activity of R- and S- praziquantel enantiomers and the main human metabolite trans-4-hydroxy-praziquantel against Schistosoma haematobium. Parasites Vect. 2017, 10, 365. [Google Scholar] [CrossRef]
- Pieraccini, S.; Ferrarini, A.; Spada, G.P. Chiral Doping of Nematic Phases and Its Application to the Determination of Absolute Configuration. Chirality Pharmacol. Biol. Chem. Conseq. Mol. Asymmetry 2008, 20, 749–759. [Google Scholar] [CrossRef]
- Cook, M.J.; Wilson, M.R. Calculation of helical twisting power for liquid crystal chiral dopants. J. Chem. Phys. 2000, 112, 1560–1564. [Google Scholar] [CrossRef]
- D’havé, K.; Dahlgren, A.; Rudquist, P.; Lagerwall, J.P.F.; Andersson, G.; Matuszczyk, M.; Lagerwall, S.T.; Dąbrowski, R.; Drzewiński, W. Antiferroelectric Liquid Crystals with 45° Tilt—A New Class of Promising Electro-Optic Materials. Ferroelectrics 2000, 244, 115–128. [Google Scholar] [CrossRef]
- Lagerwall, S.T.; Dahlgren, A.; Jagemalm, P.; Rudquist, P.; D’Have, K.; Pauwels, H.; Dąbrowski, R.; Drzewiński, W. Unique electro-optical properties of liquid crystals designed for molecular optics. Adv. Funct. Mat. 2001, 11, 87–94. [Google Scholar] [CrossRef]
- Rudquist, P.; Meier, J.G.; Lagerwall, J.P.F.; D’have, K.; Lagerwall, S.T. Tilt plane orientation in antiferroelectric liquid crystal cells and the origin of the pretransitional effect. Phys. Rev. E 2002, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rudquist, P. Orthoconic antiferroelectric liquid crystals. Liq. Cryst. 2013, 40, 1678–1697. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Gąsowska, J.; Otón, J.; Piecek, W.; Przedmojski, J.; Tykarska, M. High tilted antiferroelectric liquid crystalline materials. Displays 2004, 25, 9–19. [Google Scholar] [CrossRef]
- Drzewiński, W.; Dąbrowski, R.; Czupryński, K. Orthoconic antiferroelectrics. Synthesis and mesomorphic properties of optically active (S)-(+)-4-(1-methylheptyloxycarbonyl)phenyl 4’-(fluoroalkanoyloxyalkoxy)biphenyl-4-carboxylates and 4’-(alkanoyloxyalkoxy)biphenyl-4-carboxylates. Pol. J. Chem. 2002, 76, 273–284. [Google Scholar] [CrossRef]
Acronyms | Structure of Enantiomers/Racemate |
---|---|
1.(S) | Cr 28.1 SmCA* (97.0) & SmA* 99.0 Iso |
2.(S) | Cr 37.4 SmCA* 103.1 SmC* 104.3 SmA* 109.1 Iso |
3.(R,S) | Cr 39.1 SmCA 84.1 SmC 95.1 Iso |
Acronyms of Enantiomers | Weight Ratio [%] |
---|---|
1.(S) | 52.52 |
2.(S) | 47.48 |
Mixtures | Acronyms of Enantiomers/Racemate | Weight Ratio [%] |
---|---|---|
W-462 | 1.(S) | 26.26 |
3.(R,S) | 26.26 | |
2.(S) | 47.48 | |
W-463 | 1.(S) | 39.39 |
3.(R,S) | 13.13 | |
2.(S) | 47.48 | |
W-464 | 1.(S) | 47.27 |
3.(R,S) | 5.25 | |
2.(S) | 47.48 |
Mixtures | SmCA* | T1 | SmC* | T2 | SmA* | T3 | Iso |
---|---|---|---|---|---|---|---|
W-462 | 98.7–98.8 | 101.2–101.6 | 104.9–106.7 | ||||
96.1–96.9 | 100.7–101.5 | 103.8–105.7 | |||||
96.6 | 99.3 | 102.8 | |||||
93.2 | 98.0 | 101.0 | |||||
W-463 | 97.1–98.1 | 99.1–100.0 | 101.7–103.7 | ||||
93.2–95.6 | 98.5–99.0 | 100.6–102.8 | |||||
97.4 | 99.4 | 102.8 | |||||
94.9 | 98.2 | 100.8 | |||||
W-464 | 97.3–97.6 | 99.0–99.6 | 101.5–103.5 | ||||
95.4–96.1 | 98.5–99.1 | 100.6–102.5 | |||||
97.9 | 99.7 | 102.6 | |||||
95.6 | 98.3 | 100.7 | |||||
W-1000 | 100.5 | 103.6 | 106.1 | ||||
101.7 | 103.4 | 105.7 | |||||
99.8 | 101.3 | 103.3 | |||||
98.2 | 101.2 | 102.4 |
Mixture W-1000 | Mixture W-462 | Mixture W-463 | Mixture W-464 | ||
---|---|---|---|---|---|
[J/g] | [J/g] | [J/g] | [J/g] | ||
SmCA*-SmC* | 0.11 | 0.03 | 0.06 | 0.07 | |
SmC*-SmA* | 1.19 | 1.05 | 1.03 | 0.89 | |
SmA*-Iso | 4.80 | 4.63 | 4.55 | 4.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbańska, M.; Dardas, D. Properties of Antiferroelectric Mixtures Differing in the Amount of Added Racemate. Crystals 2024, 14, 147. https://doi.org/10.3390/cryst14020147
Urbańska M, Dardas D. Properties of Antiferroelectric Mixtures Differing in the Amount of Added Racemate. Crystals. 2024; 14(2):147. https://doi.org/10.3390/cryst14020147
Chicago/Turabian StyleUrbańska, Magdalena, and Dorota Dardas. 2024. "Properties of Antiferroelectric Mixtures Differing in the Amount of Added Racemate" Crystals 14, no. 2: 147. https://doi.org/10.3390/cryst14020147
APA StyleUrbańska, M., & Dardas, D. (2024). Properties of Antiferroelectric Mixtures Differing in the Amount of Added Racemate. Crystals, 14(2), 147. https://doi.org/10.3390/cryst14020147