The Crystal Structure and Physicochemical Properties of New Complexes Containing a CuII-LnIII-CuII Core
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of the N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane
2.1.2. Synthesis of Heterometallic Complexes [Cu4Ln2] (Ln = Tb (1), Ho (2), Er (3))
- Yield 20% 1. Anal. C70H89Cu4N14O44.5Tb2 2410.55 (%): C, 34.88; H, 3.72; N, 8.14; Cu, 10.55; Tb, 13.19. Found: C, 35.50; H, 3.70; N, 8.10; Cu, 10.55; Tb, 13.20.
- Yield 23% 2. Anal. C68H83Cu4Ho2N14O44.5, 2392.50 (%): C, 34.14; H, 3.50; N, 8.20; Cu, 10.62; Ho, 13.79. Found: C, 34.20; H, 3.35; N, 8.00; Cu, 10.30; Ho, 13.60.
- Yield 22% 3. Anal. C71H96Cu4Er2N14O47, 2486.29 (%): C, 34.30; H, 3.90; N, 7.89; Cu, 10.22; Er, 13.46. Found: C, 34.80; H, 3.45; N, 8.10; Cu, 10.40; Er, 13.50.
2.2. Methods
X-ray Crystal Structure Determination
3. Results and Discussion
3.1. Crystal and Molecular Structure
3.2. Thermal Properties
3.3. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shukla, P.; Das, S.; Bag, P.; Dey, A. Magnetic materials based on heterometallic CrII/III–LnIII complexes. Inorg. Chem. Front. 2023, 10, 4322. [Google Scholar] [CrossRef]
- Amirkhanov, O.V.; Moroz, O.V.; Znovjyak, K.O.; Sliva, T.Y.; Penkova, L.V.; Yushchenko, T.; Szyrwiel, L.; Konovalova, I.S.; Dyakonenko, V.; Shishkin, O.V. Heterobinuclear Zn–Ln and Ni–Ln complexes with Schiff-base and carbacylamidophosphate ligands: Synthesis, crystal structures, and catalytic activity. Eur. J. Inorg. Chem. 2014, 23, 3720–3730. [Google Scholar] [CrossRef]
- Kajiwara, T.; Nakano, M.; Takahashi, K.; Takaishi, S.; Yamashita, M. Structural design of easy-axis magnetic anisotropy and determination of anisotropic parameters of LnIII-CuII single-molecule magnets. Chem. Eur. J. 2011, 17, 196–205. [Google Scholar] [CrossRef]
- Novitchi, G.; Costes, J.P.; Donnadieu, B. Synthesis and structure of 1-D heterometallic thiocyanato-bridged CuIIGdIII polymers with ferromagnetic properties. Eur. J. Inorg. Chem. 2004, 1808–1812. [Google Scholar] [CrossRef]
- Okazawa, A.; Watanabe, R.; Nezu, M.; Shimada, T.; Yoshii, S.; Nojiri, H.; Ishida, T. Ferromagnetic Gd Cu, Tb Cu, and Ho Cu couplings in isomorphous [Ln2Cu] complexes. Chem. Lett. 2010, 39, 1331 1332. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, D.-Y.; Suo, J.-J.; Gu, W.; Tian, J.-L.; Liu, X.; Yan, S.-P. Synthesis, magnetism and spectral studies of six defective dicubane tetranuclear {M4O6} (M = NiII, CoII, ZnII) and three trinuclear CdII complexes with polydentate Schiff base ligands. Dalton Trans. 2016, 45, 10233–10248. [Google Scholar] [CrossRef]
- Liua, K.; Shia, W.; Chenga, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord. Chem. Rev. 2015, 290, 74–122. [Google Scholar] [CrossRef]
- Dong, Y.-J.; Ma, J.-C.; Zhu, L.-C.; Dong, W.-K.; Zhang, Y. Four 3d–4f heteromultinuclear zinc(II)–lanthanide(III) complexes constructed from a distinct hexadentate N2O2-type ligand: Syntheses, structures and luminescence properties. J. Coord. Chem. 2017, 70, 103–115. [Google Scholar] [CrossRef]
- Beata Cristóvão, B.; Miroslaw, B.; Kłak, J.; Rams, M. Carbonato-bridged heteronuclear NiII2LnIII2 (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) complexes synthesized by fixation of atmospheric CO2—Structural and magnetic studies. Polyhedron 2015, 85, 697–704. [Google Scholar] [CrossRef]
- Kori, D.; Dote, Y.; Koikawa, M.; Yamada, Y. Syntheses, crystal structures, and solid-state photoluminescence properties of heterotrinuclear Zn2Ln (Ln: La, Sm, Eu, Tb) complexes derived from 1,4-diaminobutane-based N2O4 compartmental ligand. Polyhedron 2019, 170, 612–621. [Google Scholar] [CrossRef]
- Ishida, T.; Watanabe, R.; Fujiwara, K.; Okazawa, A.; Kojima, N.; Tanaka, G.; Yoshiic, S.; Nojiri, H. Exchange coupling in TbCu and DyCu single-molecule magnets and related lanthanide and vanadium analogs. Dalton Trans. 2012, 41, 13609–13619. [Google Scholar] [CrossRef]
- Das, S.; Sahu, A.; Joshi, M.; Paul, S.; Shit, M.; Choudhury, A.R.; Biswas, B. Ligand-centered radical activity by a zinc-Schiff-base complex towards catechol oxidation. Chem. Sel. 2018, 3, 10774–11078. [Google Scholar] [CrossRef]
- Pala, C.K.; Mahatoa, S.; Joshib, M.; Paulc, S.; Choudhuryb, A.R.; Biswas, B. Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorg. Chim. Acta 2020, 506, 119541. [Google Scholar]
- Mukherjee, A.; Saha, M.K.; Rudra, I.; Ramasesha, S.; Nethaji, M.; Chakravarty, A.R. Synthesis, crystal structure and magnetic properties of quasi-linear tetranuclear copper(II) Schiff base complexes formed by covalent linkage of asymmetrically dibridged dicopper(II) units. Inorg. Chim. Acta 2004, 357, 1077–1082. [Google Scholar] [CrossRef]
- Elmali, A.; Zeyrek, C.T.; Elerman, Y. Crystal structure, magnetic properties and molecular orbital calculations of a binuclear copper(II) complex bridged by an alkoxo-oxygen atom and an acetate ion. J. Mol. Struct. 2004, 693, 225–234. [Google Scholar] [CrossRef]
- Sanatkar, T.H.; Khorshidi, A.; Janczak, J. Dinuclear Zn(II) and tetranuclear Co(II) complexes of a tetradentate N2O2 Schiff base ligand: Synthesis, crystal structure, characterization, DFT studies, cytotoxicity evaluation, and catalytic activity toward benzyl alcohol oxidation. Appl. Organomet. Chem. 2020, 34, e5493. [Google Scholar] [CrossRef]
- Yasuda, S.; Takase, M.; Sano, A.; Akitsu, T. Schiff base dinuclear Zn(II) complexes as assisting fluorescent probe for CD19 antibody protein. Int. J. Chem. Eng. Appl. 2017, 8, 290–293. [Google Scholar] [CrossRef]
- Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Rudbari, H.; Ardakani, A.; Sedighi-Khavidak, S.; Munawarf, K.; Ashfaq, M.; Tahir, M. Binuclear Zn(II) Schiff base complexes: Synthesis, spectral characterization, theoretical studies and antimicrobial investigations. Inorg. Chim. Acta 2022, 530, 120677. [Google Scholar] [CrossRef]
- Dey, D.; Kaur, G.; Patra, M.; Choudhury, A.; Kole, N.; Biswas, B. A perfectly linear trinuclear zinc–Schiff base complex: Synthesis, luminescence property and photocatalytic activity of zinc oxide nanoparticle. Inorg. Chim. Acta 2014, 421, 335–341. [Google Scholar] [CrossRef]
- Mal, S.K.; Mitra, M.; Purohit, C.S.; Ghosh, R. A trimetallic zinc(II) complex and its catecholase activity. Polyhedron 2015, 101, 191–195. [Google Scholar] [CrossRef]
- Song, Y.; Massera, C.; Roubeau, O.; Gamez, P.; Manotti Lanfredi, A.M.; Reedijk, J. An unusual open cubane structure in 1,1-azido- and alkoxo-bridged tetranuclear copper(II) complex, [Cu4L2(1,1-N3)2]‚5H2O(H3L) N,N′-(2-Hydroxylpropane-1,3-diyl)bis-salicylideneimine). Inorg. Chem. 2004, 43, 6842–6847. [Google Scholar] [CrossRef]
- Yang, F.-L.; Shao, F.; Zhu, G.-Z.; Shi, Y.-H.; Gao, F.; Li, X.-L. Structures and magnetostructural correlation analyses for two novel hexanuclear complexes based on a pentadentate Schiff base ligand. ChemistrySelect 2017, 2, 110–117. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Liu, Y.-Q.; Deng, X.-W.; Zhu, Z.-X.; Yao, M.-X.; Jing, S. Synthesis, structures and magnetism of heterodinuclear Ni–Ln complexes: Field-induced single-molecule magnet behavior in the dysprosium analogue. New J. Chem. 2015, 39, 3467–3473. [Google Scholar] [CrossRef]
- Pasatoiu, T.D.; Etienne, M.; Madalan, A.M.; Sessoli, R.; Andruh, M. Crystal structures and magnetic properties of two new heterodinuclear [NiIILnIII] complexes obtained using a side-off compartmental ligand and 2,6-pirydin-dicarboxylato coligand. Rev. Roum. Chim. 2012, 57, 507–512. [Google Scholar]
- Wang, J.-H.; Yan, P.-F.; Li, G.-M.; Zhang, J.-W.; Chen, P.; Suda, M.; Einag, Y. N,N-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminopropane dimeric 4f and 3d–4f heterodinuclear complexes: Syntheses, crystal structures and magnetic properties. Inorg. Chim. Acta 2010, 363, 3706–3713. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Liu, X.; Tian, J.; Yan, S. Three series of heterometallic NiII–LnIII Schiff base complexes: Synthesis, crystal structures and magnetic characterization. Dalton Trans. 2017, 46, 12558–12573. [Google Scholar] [CrossRef]
- Costes, J.-P.; Donnadieu, B.; Gheorghe, R.; Novitchi, G.; Tuchagues, J.-P.; Vendier, L. Di- or trinuclear 3d–4f Schiff base complexes: The role of anions. Eur. J. Inorg. Chem. 2008, 5235–5244. [Google Scholar] [CrossRef]
- Cristóvão, B.; Kłak, J.; Pełka, R.; Miroslaw, B.; Hnatejko, Z. Heterometallic trinuclear 3d–4f–3d compounds based on a hexadentate Schiff base ligand. Polyhedron 2014, 68, 180–190. [Google Scholar] [CrossRef]
- Cristóvão, B.; Kłak, J.; Miroslaw, B. Synthesis, crystal structures and magnetic behavior of NiII–4f–NiII compounds. Polyhedron 2012, 43, 47–54. [Google Scholar] [CrossRef]
- Sakamoto, S.; Fujinami, T.; Nishi, K.; Matsumoto, N.; Mochida, N.; Ishida, T.; Sunatsuki, Y.; Re, N. Carbonato-bridged NiII2LnIII2 (LnIII = GdIII, TbIII, DyIII) complexes generated by atmospheric CO2 fixation and their single-molecule magnet behavior: [(μ4-CO3)2{NiII(3-MeOsaltn)(MeOH or H2O)LnIII(NO3)}2]·solvent [3-MeOsaltn = N,N′-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato]. Inorg. Chem. 2013, 52, 7218–7229. [Google Scholar] [PubMed]
- Im, S.Y.; Park, S.J.; Im, H.J.; Lee, S.W. Conversion of Ni–Nd and Ni–Tb compartment compounds into one-dimensional coordination polymers or tetranuclear dimers. Polyhedron 2016, 117, 231–243. [Google Scholar] [CrossRef]
- Pasatoiu, T.D.; Ghirri, A.; Madalan, A.M.; Affronte, M.; Andruh, M. Octanuclear [NiII4LnIII4] complexes. Synthesis, crystal structures and magnetocaloric properties. Dalton Trans. 2014, 43, 9136–9142. [Google Scholar] [CrossRef]
- Wang, H.-S.; Zhang, Z.; Song, Y.; Pan, Z.-Q. Recent advances in 3d-4f magnetic complexes with several types of non-carboxylate organic ligands. Inorg. Chim. Acta 2021, 521, 120318. [Google Scholar] [CrossRef]
- Chen, Y.; Long, Q.-Q.; Hu, Z.-B.; Wang, H.-S.; Huang, Z.-Y.; Chen, W.; Song, Y.; Zhang, Z.-C.; Yang, F.-J. Synthesis, crystal structures and magnetic properties of a series of pentanuclear heterometallic [CuII3LnIII2 ] (Ln = Ho, Dy, and Gd) complexes containing mixed organic ligands. New J. Chem. 2019, 43, 8101–8108. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Z.; Wang, K.; Xi, L.; Ma, Y.; Li, L. Slow relaxation of magnetization in unprecedented Cu–Ln-Rad hetero-tri-spin chains constructed from multidentate nitronyl nitroxide. J. Mater. Chem. C 2019, 7, 9057. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, F.; Zheng, J. Syntheses, Structures, and Magnetic Properties of a Series of Heterotri-, Tetra- and Pentanuclear LnIII–CoII Compounds. Polymers 2019, 11, 196. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Y.; Li, M.-X.; Nfor, E.; Wang, Z.-X. Controllable fabrication of one-dimensional and two-dimensional compounds with heterometallic units: Syntheses, crystal structures, and magnetic properties. Cryst. Growth Des. 2020, 20, 5760–5766. [Google Scholar] [CrossRef]
- Zeyrek, C.T.; Elmali, A.; Elerman, Y. Magnetic characterization, synthesis and crystal structure of a heterodinuclear CuIIGdIII Schiff base complex bridged by the two phenolic oxygen atoms. J. Mol. Struct. 2005, 740, 47–52. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; VCH Publishers Inc.: New York, NY, USA, 1993. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Cryst. 2015, A71, 59–75. [Google Scholar]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar]
- Cristóvão, B.; Pełka, R.; Miroslaw, B. A novel hexanuclear CuII4–GdIII2 cluster obtained from heterotrinuclear building blocks. Inorg. Chem. Commun. 2015, 54, 81–84. [Google Scholar] [CrossRef]
- Cristóvão, B.; Miroslaw, B.; Bartyzel, A. Hexanuclear [Cu4IILn2III] compounds incorporating N,O-donor ligands –Synthesis, crystal structures and physicochemical properties. Inorg. Chim. Acta 2017, 466, 160–165. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M.-X.; Sui, Y.; Nfor, E.N.; Wang, Z.-X. Two 1D homochiral heterometallic chains: Crystal structures, spectra, ferroelectricity and ferromagnetic properties. RSC Adv. 2020, 10, 7004–7010. [Google Scholar] [CrossRef]
- Wang, H.-S.; Yang, F.-J.; Long, Q.-Q.; Huang, Z.-Y.; Chen, W.; Pan, Z.-Q. Syntheses, crystal structures, and magnetic properties of a family of heterometallic octanuclear [Cu6Ln2] (Ln = Dy(III), Tb(III), Ho(III), Er(III), and Gd(III)) complexes. New J. Chem. 2017, 41, 5884–5892. [Google Scholar] [CrossRef]
- Zhao, F.-H.; Li, H.; Che, Y.-X.; Zheng, J.-M.; Vieru, V.; Chibotaru, L.F.; Grandjean, F.; Long, G.J. Synthesis, structure, and magnetic properties of Dy2Co2L10(bipy)2 and Ln2Ni2L10 (bipy)2, Ln= La, Gd, Tb, Dy, and Ho: Slow magnetic relaxation in Dy2Co2L10(bipy)2. Inorg. Chem. 2014, 53, 9785–9799. [Google Scholar] [CrossRef]
- Wen, H.-R.; Bao, J.; Liu, S.-J.; Liu, C.-M.; Zhang, C.-W.; Tang, Y.-Z. Temperature-controlled polymorphism of chiral CuII–LnIII dinuclear complexes exhibiting slow magnetic relaxation. Dalton Trans. 2015, 44, 11191–11201. [Google Scholar] [CrossRef]
- Mahapatra, P.; Koizumi, N.; Kanetomo, T.; Ishida, T.; Ghosh, A. A Series of CuII−LnIII Complexes of an N2O3 donor asymmetric ligand and a possible CuII−TbIII SMM candidate in no bias field. New J. Chem. 2019, 43, 634–643. [Google Scholar] [CrossRef]
- Andruh, M.; Ramade, I.; Codjovi, E.; Guillou, O.; Kahn, O.; Trombe, J.C. Crystal structure and magnetic properties of [Ln2Cu4] hexanuclear clusters (where Ln = trivalent lanthanide). Mechanism of the gadolinium(III)-copper(II) magnetic interaction. J. Am. Chem. Soc. 1993, 115, 1822–1829. [Google Scholar] [CrossRef]
Identification Code | 1 | 2 | 3 |
---|---|---|---|
Empirical formula | C70H89Cu4N14O44.5Tb2 | C68H83Cu4Ho2N14O44.5 | C71H96Cu4Er2N14O47 |
Formula weight | 2410.55 | 2392.50 | 2486.29 |
Temperature/K | 100 | 120 | 100 |
Crystal system | triclinic | triclinic | triclinic |
Space group | P-1 | P-1 | P-1 |
a/Å | 13.1559(6) | 13.1295(10) | 13.2417(4) |
b/Å | 17.3358(6) | 17.1870(10) | 17.5068(8) |
c/Å | 19.9912(8) | 20.0878(4) | 20.1010(7) |
α/° | 93.276(3) | 92.592(3) | 86.422(3) |
β/° | 90.715(4) | 90.777(4) | 89.995(3) |
γ/° | 110.924(4) | 110.209(6) | 68.400(3) |
Volume/Å3 | 4249.1(3) | 4247.5(5) | 4322.8(3) |
Z | 2 | 2 | 2 |
ρcalc/gcm3 | 1.884 | 1.871 | 1.910 |
μ/mm−1 | 2.735 | 5.339 | 2.998 |
F(000) | 2418.0 | 2390.0 | 2496.0 |
Crystal size/mm3 | 0.35 × 0.3 × 0.08 | 0.2 × 0.15 × 0.05 | 0.4 × 0.2 × 0.2 |
Radiation | MoKα (λ = 0.71073) | CuKα (λ = 1.54184) | MoKα (λ = 0.71073) |
Reflections collected | 27295 | 31010 | 21086 |
Independent reflections | 15327 [Rint = 0.0452, Rsigma = 0.0761] | 17214 [Rint = 0.0905, Rsigma = 0.1243] | 16539 [Rint = 0.0728, Rsigma = 0.0869] |
Data/restraints/parameters | 15327/71/1214 | 17214/30/1191 | 16539/97/1188 |
Goodness of fit on F2 | 1.037 | 1.040 | 0.948 |
Final R indexes [I > =2σ (I)] | R1 = 0.0497, wR2 = 0.1137 | R1 = 0.0931, wR2 = 0.2398 | R1 = 0.0682, wR2 = 0.1800 |
Final R indexes [all data] | R1 = 0.0822, wR2 = 0.1361 | R1 = 0.1297, wR2 = 0.2747 | R1 = 0.1067, wR2 = 0.2002 |
Largest diff. peak/hole/e Å−3 | 1.72/−1.39 | 3.35/−1.87 | 4.23/−2.15 |
CCDC No. | 2314649 | 2314651 | 2314650 |
Bond/Distance | 1 | 2 | 3 |
---|---|---|---|
Cu1–N1 | 1.983(6) | 1.983(8) | 1.979(8) |
Cu1–N2 | 1.968(6) | 1.978(8) | 1.971(8) |
Cu1–O1 | 1.940(4) | 1.945(6) | 1.947(6) |
Cu1–O2 | 1.947(5) | 1.963(7) | 1.960(7) |
Cu1–O19/O17 a | 2.491(7) | 2.530(1) | 2.483(8) |
Cu1–O22/O21 b | 2.526(5) | 2.503(7) | 2.527(6) |
Cu2–N3 | 1.962(7) | 1.957(9) | 1.959(10) |
Cu2–N4 | 1.981(6) | 1.988(8) | 1.970(8) |
Cu2–O5 | 1.943(4) | 1.954(6) | 1.937(6) |
Cu2–O6 | 1.942(5) | 1.939(6) | 1.942(6) |
Cu2–O42/O36/O38 c | 2.442(6) | 2.430(8) | 2.35(6) |
Cu3–N5 | 1.950(7) | 1.967(10) | 1.968(10) |
Cu3–N6 | 1.992(8) | 2.008(10) | 1.966(10) |
Cu3–O9 | 1.931(5) | 1.940(7) | 1.931(6) |
Cu3–O10 | 1.930(5) | 1.938(7) | 1.949(7) |
Cu3–O23/O22 d | 2.527(4) | 2.515(6) | 2.583(6) |
Cu4–N7 | 1.982(6) | 1.993(10) | 1.979(8) |
Cu4–N8 | 1.962(7) | 1.985(8) | 1.957(10) |
Cu4–O13 | 1.940(5) | 1.981(6) | 1.950(7) |
Cu4–O14 | 1.968(4) | 1.956(7) | 1.978(6) |
Cu4–O37/O26/O36a 3i e | 2.424(7) | 2.362(9) | 2.480(1) |
Cu4–O28/O29 f | 2.596(5) | 2.599(6) | 2.629(7) |
Ln1–O1 | 2.344(5) | 2.302(7) | 2.311(6) |
Ln1–O2 | 2.372(4) | 2.353(6) | 2.352(6) |
Ln1–O3 | 2.457(5) | 2.415(6) | 2.429(6) |
Ln1–O4 | 2.489(5) | 2.470(6) | 2.469(6) |
Ln1–O5 | 2.378(4) | 2.345(6) | 2.361(6) |
Ln1–O6 | 2.326(4) | 2.301(6) | 2.315(6) |
Ln1–O7 | 2.447(5) | 2.426(7) | 2.423(7) |
Ln1–O8 | 2.478(5) | 2.439(6) | 2.443(6) |
Ln1–O17/O35 g | 2.406(5) | 2.403(7) | 2.382(6) |
Ln2–O9 | 2.373(4) | 2.344(6) | 2.335(6) |
Ln2–O10 | 2.340(5) | 2.316(6) | 2.298(6) |
Ln2–O11 | 2.422(6) | 2.419(6) | 2.414(6) |
Ln2–O12 | 2.468(5) | 2.425(6) | 2.447(6) |
Ln2–O13 | 2.374(4) | 2.306(7) | 2.354(6) |
Ln2–O14 | 2.330(5) | 2.353(6) | 2.303(7) |
Ln2–O15 | 2.419(5) | 2.454(6) | 2.389(7) |
Ln2–O16 | 2.468(5) | 2.393(6) | 2.441(6) |
Ln2–O18/O37 h | 2.430(5) | 2.429(8) | 2.394(6) |
Cu1…Ln1 | 3.4839(9) | 3.4815(14) | 3.4759(11) |
Cu2…Ln1 | 3.4947(9) | 3.4811(13) | 3.4834(11) |
Cu3…Ln2 | 3.5015(10) | 3.4854(16) | 3.4806(13) |
Cu4…Ln2 | 3.4685(10) | 3.4618(15) | 3.4526(12) |
Angles/° | 1 | 2 | 3 |
---|---|---|---|
Cu1–O1–Ln1 | 108.5(2) | 109.8(3) | 124.2(5) |
Cu1–O2–Ln1 | 107.2(2) | 107.2(3) | 107.1(3) |
Cu2–O5–Ln1 | 107.5(19) | 107.8(3) | 107.9(3) |
Cu2–O6–Ln1 | 109.6(2) | 110.1(3) | 109.5(3) |
Cu3–O9–Ln2 | 108.4(2) | 108.5(3) | 109.0(3) |
Cu3–O10–Ln2 | 109.8(2) | 109.7(3) | 109.8(3) |
Cu4–O13–Ln2 | 106.6(2) | 107.5(3) | 106.3(3) |
Cu4–O14–Ln2 | 107.3(2) | 106.6(3) | 107.3(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristóvão, B.; Osypiuk, D.; Mirosław, B. The Crystal Structure and Physicochemical Properties of New Complexes Containing a CuII-LnIII-CuII Core. Crystals 2024, 14, 189. https://doi.org/10.3390/cryst14020189
Cristóvão B, Osypiuk D, Mirosław B. The Crystal Structure and Physicochemical Properties of New Complexes Containing a CuII-LnIII-CuII Core. Crystals. 2024; 14(2):189. https://doi.org/10.3390/cryst14020189
Chicago/Turabian StyleCristóvão, Beata, Dariusz Osypiuk, and Barbara Mirosław. 2024. "The Crystal Structure and Physicochemical Properties of New Complexes Containing a CuII-LnIII-CuII Core" Crystals 14, no. 2: 189. https://doi.org/10.3390/cryst14020189
APA StyleCristóvão, B., Osypiuk, D., & Mirosław, B. (2024). The Crystal Structure and Physicochemical Properties of New Complexes Containing a CuII-LnIII-CuII Core. Crystals, 14(2), 189. https://doi.org/10.3390/cryst14020189