Local Charge Distribution in GaxPdy Intermetallics: Characterizing Catalyst Surfaces from Large-Scale Molecular Mechanics Simulations
Abstract
:1. Introduction
2. Methods and Models
2.1. DFT Calculations
2.2. EAM and Modified EAM Potentials
2.3. Charge Equilibration Method (QEq)
2.4. Molecular Mechanics Calculations
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ota, A.; Armbrüster, M.; Behrens, M.; Rosenthal, D.; Friedrich, M.; Kasatkin, I.; Girgsdies, F.; Zhang, W.; Wagner, R.; Schlögl, R. Intermetallic Compound Pd2Ga as a Selective Catalyst for the Semi-Hydrogenation of Acetylene: From Model to High Performance Systems. J. Phys. Chem. C 2011, 115, 1368–1374. [Google Scholar] [CrossRef]
- Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A.; et al. How to Control the Selectivity of Palladium-Based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem 2012, 4, 1048–1063. [Google Scholar] [CrossRef]
- Bauer, M.; Schoch, R.; Shao, L.; Zhang, B.; Knop-Gericke, A.; Willinger, M.; Schlögl, R.; Teschner, D. Structure-Activity Studies on Highly Active Palladium Hydrogenation Catalysts by X-Ray Absorption Spectroscopy. J. Phys. Chem. C 2012, 116, 22375–22385. [Google Scholar] [CrossRef]
- Zimmermann, R.R.; Hahn, T.; Reschetilowski, W.; Armbrüster, M. Kinetic Parameters for the Selective Hydrogenation of Acetylene on GaPd2 and GaPd. ChemPhysChem 2017, 18, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Glyzdova, D.V.; Smirnova, N.S.; Leont’eva, N.N.; Gerasimov, E.Y.; Prosvirin, I.P.; Vershinin, V.I.; Shlyapin, D.A.; Tsyrul’nikov, P.G. Synthesis and Characterization of Sibunit-Supported Pd–Ga, Pd–Zn, and Pd–Ag Catalysts for Liquid-Phase Acetylene Hydrogenation. Kinet. Catal. 2017, 58, 140–146. [Google Scholar] [CrossRef]
- Mayr, L.; Lorenz, H.; Armbrüster, M.; Villaseca, S.A.; Luo, Y.; Cardoso, R.; Burkhardt, U.; Zemlyanov, D.; Haevecker, M.; Blume, R.; et al. The Catalytic Properties of Thin Film Pd-Rich GaPd2 in Methanol Steam Reforming. J. Catal. 2014, 309, 231–240. [Google Scholar] [CrossRef]
- Rameshan, C.; Lorenz, H.; Armbrüster, M.; Kasatkin, I.; Klötzer, B.; Götsch, T.; Ploner, K.; Penner, S. Impregnated and Co-Precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of the Microstructure on the CO2 Selectivity in Methanol Steam Reforming. Catal. Lett. 2018, 148, 3062–3071. [Google Scholar] [CrossRef]
- Li, L.; Zhang, B.; Kunkes, E.; Föttinger, K.; Armbrüster, M.; Su, D.S.; Wei, W.; Schlögl, R.; Behrens, M. Ga-Pd/Ga2O3 Catalysts: The Role of Gallia Polymorphs, Intermetallic Compounds, and Pretreatment Conditions on Selectivity and Stability in Different Reactions. ChemCatChem 2012, 4, 1764–1775. [Google Scholar] [CrossRef]
- Fiordaliso, E.M.; Sharafutdinov, I.; Carvalho, H.W.P.; Kehres, J.; Grunwaldt, J.D.; Chorkendorff, I.; Damsgaard, C.D. Evolution of Intermetallic GaPd2/SiO2 Catalyst and Optimization for Methanol Synthesis at Ambient Pressure. Sci. Technol. Adv. Mater. 2019, 20, 521–531. [Google Scholar] [CrossRef]
- García-Trenco, A.; White, E.R.; Regoutz, A.; Payne, D.J.; Shaffer, M.S.P.; Williams, C.K. Pd2Ga-Based Colloids as Highly Active Catalysts for the Hydrogenation of CO2 to Methanol. ACS Catal. 2017, 7, 1186–1196. [Google Scholar] [CrossRef]
- Oyola-Rivera, O.; Baltanás, M.A.; Cardona-Martínez, N. CO2 Hydrogenation to Methanol and Dimethyl Ether by Pd–Pd2Ga Catalysts Supported over Ga2O3 Polymorphs. J. CO2 Util. 2015, 9, 8–15. [Google Scholar] [CrossRef]
- Zerdoumi, R.; Matselko, O.; Rößner, L.; Sarkar, B.; Grin, Y.; Armbrüster, M. Disentangling Electronic and Geometric Effects in Electrocatalysis through Substitution in Isostructural Intermetallic Compounds. J. Am. Chem. Soc. 2022, 144, 8379–8388. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K.; Lukas, H.; Meißner, H.; Bhan, S. Zum Aufbau Der Systeme Kobalt-Gallium, Palladium-Gallium, Palladium-Zinn Und Verwandter Legierungen. Int. J. Mater. Res. 1959, 50, 534–540. [Google Scholar] [CrossRef]
- Khalaff, K.; Schubert, K. Kristallstruktur von Pd5Ga2. J. Less-Common Met. 1974, 37, 129–140. [Google Scholar] [CrossRef]
- Armbrüster, M. Intermetallic Compounds in Catalysis–a Versatile Class of Materials Meets Interesting Challenges. Sci. Technol. Adv. Mater. 2020, 21, 303–322. [Google Scholar] [CrossRef]
- Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747. [Google Scholar] [CrossRef]
- Matselko, O.; Zimmermann, R.R.; Ormeci, A.; Burkhardt, U.; Gladyshevskii, R.; Grin, Y.; Armbrüster, M. Revealing Electronic Influences in the Semihydrogenation of Acetylene. J. Phys. Chem. C 2018, 122, 21891–21896. [Google Scholar] [CrossRef]
- Ormeci, A.; Gaudry, E.; Armbrüster, M.; Grin, Y. Chemical Bonding in the Catalytic Platform Material Ga1-XSnxPd2. ChemistryOpen 2022, 11, e202200185. [Google Scholar] [CrossRef]
- Ongari, D.; Boyd, P.G.; Kadioglu, O.; MacE, A.K.; Keskin, S.; Smit, B. Evaluating Charge Equilibration Methods to Generate Electrostatic Fields in Nanoporous Materials. J. Chem. Theory Comput. 2019, 15, 382–401. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys. Rev. Lett. 1983, 50, 1285. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes, M.I. Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef]
- Wonglakhon, T.; Maisel, S.; Görling, A.; Zahn, D. An Embedded Atom Model for Ga-Pd Systems: From Intermetallic Crystals to Liquid Alloys. J. Chem. Phys. 2021, 154, 014109. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-Precision Sampling for Brillouin-Zone Integration in Metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed]
- Le Page, Y.; Saxe, P. Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials from Ab Initio Calculations of Stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved Grid-Based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Davenport, J.W.; Fernando, G.W. Analytic Embedded-Atom Potentials for FCC Metals: Application to Liquid and Solid Copper. Phys. Rev. B 1991, 43, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Baskes, M.I. Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon. Phys. Rev. Lett. 1987, 59, 2666. [Google Scholar] [CrossRef] [PubMed]
- Baskes, M.I.; Nelson, J.S.; Wright, A.F. Semiempirical Modified Embedded-Atom Potentials for Silicon and Germanium. Phys. Rev. B 1989, 40, 6085. [Google Scholar] [CrossRef] [PubMed]
- Baskes, M.I. Modified Embedded-Atom Potentials for Cubic Materials and Impurities. Phys. Rev. B 1992, 46, 2727–2742. [Google Scholar] [CrossRef] [PubMed]
- Baskes, M.I.; Chen, S.P.; Cherne, F.J. Atomistic Model of Gallium. Phys. Rev. B 2002, 66, 104107. [Google Scholar] [CrossRef]
- Rose, J.H.; Smith, J.R.; Guinea, F.; Ferrante, J. Universal Features of the Equation of State of Metals. Phys. Rev. B 1984, 29, 2963–2969. [Google Scholar] [CrossRef]
- Lee, B.-J.; Shim, J.-H.; Baskes, M.I. Semiempirical Atomic Potentials for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb Based on First and Second Nearest-Neighbor Modified Embedded Atom Method. Phys. Rev. B 2003, 68, 144112. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST ASD Team NIST Atomic Spectra Database (Version 5.11); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Gibson, N.D.; Walter, C.W.; Crocker, C.; Wang, J.; Nakayama, W.; Yukich, J.N.; Eliav, E.; Kaldor, U. Electron Affinity of Gallium and Fine Structure of Ga-: Experiment and Theory. Phys. Rev. A 2019, 100, 052512. [Google Scholar] [CrossRef]
- Scheer, M.; Brodie, C.A.; Bilodeau, R.C.; Haugen, H.K. Laser Spectroscopic Measurements of Binding Energies and Fine-Structure Splittings of Co−, Ni−, Rh−, and Pd−. Phys. Rev. A 1998, 58, 2051. [Google Scholar] [CrossRef]
- Gale, J.D.; Rohl, A.L. The General Utility Lattice Program (GULP). Mol. Simul. 2003, 29, 291–341. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Zahn, D.; Schilling, B.; Kast, S.M. Enhancement of the Wolf Damped Coulomb Potential: Static, Dynamic, and Dielectric Properties of Liquid Water from Molecular Simulation. J. Phys. Chem. B 2002, 106, 10725–10732. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Kovnir, K.; Schmidt, M.; Waurisch, C.; Armbrüster, M.; Prots, Y.; Grin, Y. Refínement of the Crystal Structure of Dipalladium Gallium, Pd2Ga. Z. Für Krist. -New Cryst. Struct. 2008, 223, 7–8. [Google Scholar] [CrossRef]
- Armbrüster, M.; Borrmann, H.; Wedel, M.; Prots, Y.; Giedigkeit, R.; Gille, P. Refinement of the Crystal Structure of Palladium Gallium (1:1), PdGa. Z. Fur Krist. Cryst. Struct. 2010, 225, 617–618. [Google Scholar] [CrossRef]
- Krajčí, M.; Hafner, J. Semihydrogenation of Acetylene on the (010) Surface of GaPd2: Ga Enrichment Improves Selectivity. J. Phys. Chem. C 2014, 118, 12285–12301. [Google Scholar] [CrossRef]
- Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; et al. Gallium-Rich Pd-Ga Phases as Supported Liquid Metal Catalysts. Nat. Chem. 2017, 9, 862–867. [Google Scholar] [CrossRef]
Ga-Pd i−j | Mixing MEAM and Qeq (MEAMmix/QEqexp) | Newly Fitted MEAMnew/QEqnew | |
---|---|---|---|
Parameters | Source of Parameter | ||
Ec/eV | 3.782 | DFT calc. | 4.328305 |
re/Å | 2.693 | DFT calc. | 2.612755 |
α | 5.424 | 5.472011 | |
δ | 0.0735 | 0.012891 | |
Cmin(i − i − j) | 1.545 | 0.440 | |
Cmin(j − j − i) | 1.545 | 1.100 | |
Cmin(i − j−i) | 1.545 | 1.545 | |
Cmin(j − i − j) | 1.545 | 1.545 | |
Cmax(i − i − j) | 2.8 | 2.7 | |
Cmax(j − j − i) | 2.8 | 2.8 | |
Cmax(i − j − i) | 2.8 | 2.8 | |
Cmax(j − i − j) | 2.8 | 2.8 | |
1.0 | of Ga and Pd | 1.0 | |
/eV | 3.1490 | EA, IE from exp. | 2.382024 |
/eV | 2.84775 | EA, IE from exp. | 0.555958 |
/eV | 4.4481 | EA, IE from exp. | 4.055200 |
/eV | 3.88600 | EA, IE from exp. | 2.637226 |
Experiment [47] | Ab-Initio Reference [22] | EAM [22] | MEAMnew/QEqnew | |
---|---|---|---|---|
a/Å | 5.4829 | 5.4816 | 5.4072 | 5.3485 |
b/Å | 4.0560 | 4.0545 | 4.1437 | 4.0693 |
c/Å | 7.7863 | 7.8080 | 7.8601 | 7.8585 |
Elastic constants/10 GPa | ||||
c11 | 27.62 | 22.562 | 26.244 | |
c12 | 13.765 | 15.703 | 14.805 | |
c13 | 13.906 | 14.248 | 13.844 | |
c22 | 24.992 | 22.421 | 27.395 | |
c23 | 14.849 | 16.815 | 16.656 | |
c33 | 26.876 | 24.107 | 27.194 | |
c44 | 6.551 | 3.641 | 6.563 | |
c55 | 4.035 | 2.268 | 3.374 | |
c66 | 7.447 | 3.924 | 5.290 | |
B | 17.869 | 18.040 | 19.012 | |
G | 5.931 | 3.354 | 5.255 |
Exp. | DFT [22] | EAM [22] | EAM/ QEqexp | MEAMmix | MEAMmix /QEqexp | MEAMnew/ QEqnew | ||
---|---|---|---|---|---|---|---|---|
Ga5Pd [13] | a | 6.448 | 6.507 | 6.609 | 6.382 | 6.297 | 6.296 | 6.213 |
[0.9%] | [2.5%] | [1.0%] | [2.3%] | [2.4%] | [3.6%] | |||
b | 6.448 | 6.507 | 6.609 | 6.382 | 6.297 | 6.296 | 6.213 | |
[0.9%] | [2.5%] | [1.0%] | [2.3%] | [2.4%] | [3.6%] | |||
c | 10.003 | 10.104 | 10.253 | 10.901 | 10.567 | 10.565 | 10.580 | |
[1.0%] | [2.5%] | [9.0%] | [5.6%] | [5.6%] | [5.8%] | |||
Ga7Pd3 [16] | a | 8.772 | 8.865 | 8.935 | 8.938 | 7.120 | 7.135 | 8.770 |
[1.1%] | [1.9%] | [1.9%] | [18.8%] | [18.7%] | [0.0%] | |||
GaPd [48] | a | 4.8969 | 4.952 | 4.9451 | 4.9620 | 5.052 | 5.046 | 4.928 |
[1.1%] | [1.0%] | [1.3%] | [3.2%] | [3.0%] | [0.6%] | |||
Ga3Pd5 [13] | a | 5.42 | 5.514 | 5.46 | 5.42 | 5.572 | 5.558 | 5.413 |
[1.7%] | [0.7%] | [0.0%] | [2.8%] | [2.5%] | [0.1%] | |||
b | 10.51 | 10.679 | 10.59 | 10.45 | 11.103 | 11.067 | 10.445 | |
[1.6%] | [0.8%] | [0.6%] | [5.6%] | [5.3%] | [0.6%] | |||
c | 4.03 | 4.064 | 4.06 | 4.16 | 4.047 | 4.064 | 4.110 | |
[0.8%] | [0.7%] | [3.2%] | [0.4%] | [0.8%] | [2.0%] | |||
GaPd2 [47] | a | 5.4829 | 5.572 | 5.4072 | 5.4094 | 5.580 | 5.570 | 5.348 |
[1.6%] | [1.4%] | [1.3%] | [1.8%] | [1.6%] | [2.5%] | |||
b | 4.0560 | 4.092 | 4.1437 | 4.1411 | 4.010 | 4.020 | 4.069 | |
[0.9%] | [2.2%] | [2.1%] | [1.1%] | [0.9%] | [0.3%] | |||
c | 7.7863 | 7.865 | 7.8601 | 7.8553 | 8.317 | 8.303 | 7.858 | |
[1.0%] | [0.9%] | [0.9%] | [6.8%] | [6.6%] | [0.9%] | |||
Ga2Pd5 [14] | a | 5.485 | 5.507 | 5.475 | 5.416 | 5.572 | 5.565 | 5.399 |
[0.4%] | [0.2%] | [1.3%] | [1.6%] | [1.5%] | [1.6%] | |||
b | 4.083 | 4.111 | 4.075 | 4.094 | 3.967 | 3.973 | 3.961 | |
[0.7%] | [0.2%] | [0.3%] | [2.8%] | [2.7%] | [3.0%] | |||
c | 18.369 | 18.608 | 18.334 | 18.477 | 19.474 | 19.450 | 18.787 | |
[1.3%] | [0.2%] | [0.6%] | [6.0%] | [5.9%] | [2.3%] |
DFT | EAM | EAM/QEqexp | MEAMmix | MEAMmix /QEqexp | MEAMnew/ QEqnew | |
---|---|---|---|---|---|---|
Ga5Pd | −85.55 | −81.03 | −81.85 | −77.88 | −78.69 | −85.87 |
[4.5%] | [3.7%] | [7.7%] | [6.9%] | [0.3%] | ||
Ga7Pd3 | −162.75 | −147.22 | −149.61 | −134.05 | −136.36 | −163.22 |
[15.5%] | [13.1%] | [28.7%] | [26.4%] | [0.5%] | ||
GaPd | −37.97 | −34.10 | −34.76 | −29.65 | −30.29 | −38.21 |
[3.9%] | [3.2%] | [8.3%] | [7.7%] | [0.2%] | ||
Ga3Pd5 | −80.08 | −70.63 | −71.98 | −62.00 | −63.22 | −81.62 |
[9.5%] | [8.1%] | [18.1%] | [16.9%] | [1.5%] | ||
GaPd2 | −61.26 | −53.20 | −54.16 | −46.87 | −47.76 | −62.52 |
[8.1%] | [7.1%] | [14.4%] | [13.5%] | [1.3%] | ||
Ga2Pd5 | −143.90 | −123.29 | −125.32 | −110.13 | −112.05 | −146.15 |
[20.6%] | [18.6%] | [33.8%] | [31.9%] | [2.3%] |
Crystal | DFT (Bader Charge) | EAM/QEqexp | MEAMmix/QEqexp | MEAMnew/QEqnew | ||||
---|---|---|---|---|---|---|---|---|
Ga | Pd | Ga | Pd | Ga | Pd | Ga | Pd | |
Ga5Pd | 0.12 × 3, 0.15 × 10, 0.18 × 3, 0.23 × 4 (3.32) | −0.83 × 4 (−3.32) | 0.0308 × 4, 0.0315 × 16 (0.63) | −0.157 × 4 (−0.63) | 0.0313 × 4, 0.0314 × 16 (0.63) | −0.157 × 4 (−0.63) | 0.063 × 4, 0.070 × 16, (1.37) | −0.343 × 4 (−1.37) |
Ga7Pd3 | 0.29 × 6, 0.30 × 10, 0.44 × 12 (10.02) | −0.82 × 6, −0.85 × 6 (−10.02) | 0.060 × 16, 0.059 × 12 (1.67) | −0.139 × 12 (−1.67) | 0.0608 × 4, 0.0582 × 8, 0.0593 × 16 (1.66) | −0.137 × 4, −0.139 × 8 (−1.66) | 0.1501 × 4, 0.1557 × 8, 0.1413 × 16 (4.11) | −0.341 × 4, −0.343 × 8 (−4.11) |
GaPd | 0.50 × 4 (2.00) | −0.50 × 4 (−2.00) | 0.11 × 4 (0.44) | −0.11 × 4 (−0.44) | 0.11 × 4 (0.44) | −0.11 × 4 (−0.44) | 0.33 × 4 (1.32) | −0.33 × 4 (−1.32) |
Ga3Pd5 | 0.58 × 2, 0.59 × 4 (3.52) | −0.33 × 4, −0.34 × 2, −0.38 × 4 (−3.52) | 0.139 × 4, 0.138 × 2 (0.83) | −0.084 × 6, −0.028 × 4 (−0.83) | 0.1383 × 4, 0.1356 × 2 (0.82) | −0.0829 × 2 −0.0831 × 4, −0.0815 × 4, (−0.82) | 0.51 × 4, 0.52 × 2 (3.08) | −0.307 × 2, −0.312 × 2, −0.311 × 2, −0.304 × 4, (−3.08) |
GaPd2 | 0.61 × 4 (2.44) | −0.28 × 4, −0.33 × 4 (−2.44) | 0.15 × 4 (0.60) | −0.07 × 4, −0.08 × 4 (−0.60) | 0.15 × 4 (0.60) | −0.0743 × 4, −0.0744 × 4 (−0.60) | 0.60 × 4 (2.40) | −0.301 × 2, −0.302 × 2, −0.297 × 2, −0.298 × 2 (−2.40) |
Ga2Pd5 | 0.63 × 4, 0.65 × 4 (5.12) | −0.22 × 4, −0.23 × 4, −0.26 × 4, −0.27 × 4, −0.30 × 4 (−5.12) | 0.162 × 4, 0.165 × 4 (1.31) | −0.066 × 4, −0.063 × 4, −0.065 × 8, −0.068 × 4 (−1.31) | 0.158 × 4, 0.165 × 4 (1.29) | −0.066 × 4, −0.062 × 4, −0.065 × 4, −0.067 × 4, −0.063 × 4 (−1.29) | 0.658 × 4, 0.745 × 4 (5.61) | −0.286 × 4, −0.269 × 4, −0.278 × 4, −0.295 × 4, −0.275 × 4 (−5.61) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wonglakhon, T.; Maisel, S.; Görling, A.; Zahn, D. Local Charge Distribution in GaxPdy Intermetallics: Characterizing Catalyst Surfaces from Large-Scale Molecular Mechanics Simulations. Crystals 2024, 14, 592. https://doi.org/10.3390/cryst14070592
Wonglakhon T, Maisel S, Görling A, Zahn D. Local Charge Distribution in GaxPdy Intermetallics: Characterizing Catalyst Surfaces from Large-Scale Molecular Mechanics Simulations. Crystals. 2024; 14(7):592. https://doi.org/10.3390/cryst14070592
Chicago/Turabian StyleWonglakhon, Tanakorn, Sven Maisel, Andreas Görling, and Dirk Zahn. 2024. "Local Charge Distribution in GaxPdy Intermetallics: Characterizing Catalyst Surfaces from Large-Scale Molecular Mechanics Simulations" Crystals 14, no. 7: 592. https://doi.org/10.3390/cryst14070592
APA StyleWonglakhon, T., Maisel, S., Görling, A., & Zahn, D. (2024). Local Charge Distribution in GaxPdy Intermetallics: Characterizing Catalyst Surfaces from Large-Scale Molecular Mechanics Simulations. Crystals, 14(7), 592. https://doi.org/10.3390/cryst14070592