Next Article in Journal
Structural, Vibrational Spectroscopic and Theoretical (DFT) Studies of 4-Chloro- and 5-Chloro-7-azaindole-3-carbaldehydes
Next Article in Special Issue
Influence of Y2O3 Concentration on the Optical Properties of Multicomponent Glasses and Glass–Ceramics
Previous Article in Journal
Electronic State-Regulated Magnetic Phenomena in Single-Crystal FeSe
Previous Article in Special Issue
London Dispersive and Lewis Acid-Base Surface Energy of 2D Single-Crystalline and Polycrystalline Covalent Organic Frameworks
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Cluster Odd-Parity Multipoles by Staggered Orbital Ordering in Locally Noncentrosymmetric Crystals

Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Crystals 2024, 14(7), 632; https://doi.org/10.3390/cryst14070632
Submission received: 11 June 2024 / Revised: 5 July 2024 / Accepted: 6 July 2024 / Published: 9 July 2024

Abstract

:
Odd-parity multipoles in crystals manifest themselves not only in their peculiar electronic orderings but also in unconventional parity-violating physical phenomena. We here report the emergence of odd-parity multipoles by considering staggered orbital orderings in a locally noncentrosymmetric crystal system with the global inversion center but without the inversion center at each lattice site. We show that various odd-parity multipoles, such as the electric toroidal monopole, electric dipole, and electric toroidal quadrupole, are realized depending on the type of orbital orderings in the one-dimensional zigzag chain. Such odd-parity multipoles give rise to an antisymmetric spin splitting in the electronic band structure with the aid of the relativistic spin–orbit coupling. We also show that similar states with odd-parity multipoles are realized in other locally noncentrosymmetric crystals, such as the two-dimensional honeycomb and three-dimensional diamond structures.

1. Introduction

Spatial inversion symmetry is important in determining the physical properties of crystals. When the spatial inversion symmetry is lost, various parity-violating physical phenomena occur, such as spontaneous electric polarization and nonreciprocal transport [1,2,3,4,5]. The absence of spatial inversion symmetry also gives rise to an antisymmetric spin splitting in the electronic band structure in momentum space by combining the relativistic spin–orbit coupling (SOC), which is the so-called antisymmetric SOC (ASOC) [6,7]. Depending on the crystal symmetry, momentum dependence of the spin polarization is different [8,9,10]; the Rashba-type ASOC as  k × σ  under the polar point group [11,12,13,14], the hedgehog-type ASOC as  k · σ  under the chiral point group [15,16], Ising-type ASOC as  k x ( k x 2 3 k y 2 ) σ z  under other noncentrosymmetric point groups [17,18,19,20], where  k  represents the wave vector and  σ = 2 s  represents the electron spin  s . These ASOCs are the microscopic origin of further parity-violating phenomena [21,22,23,24,25,26], such as the spin Hall effect [27,28,29,30,31], the Edelstein effect [32,33,34,35,36], and noncentrosymmetric superconductivity [7,37,38,39].
The above parity-violating phenomena can be engineered in centrosymmetric crystals when the spatial inversion symmetry is spontaneously broken by an electronic-order-driven phase transition through the electron correlation [21,40,41]. The typical crystal structure to realize such a situation is a locally noncentrosymmetric crystal structure, where the global spatial inversion symmetry is present, whereas the inversion center at each lattice site is absent, as found in the one-dimensional zigzag chain [Figure 1a], two-dimensional honeycomb structure [Figure 1b], and three-dimensional diamond structure [Figure 1c]. In these situations, the staggered electronic orderings break the global spatial inversion symmetry, which results in the emergence of odd-parity multipoles [42]; the odd-parity multipoles characterize the degrees of freedom with spatial inversion odd, which is different from the conventional even-parity multipoles, such as the electric monopole and magnetic dipole. For example, the staggered electric charge (electric monopole) orderings lead to the odd-parity electric dipole leading to the uniform electric polarization, and the staggered spin (magnetic dipole) ordering with the magnetic moments along the out-of-chain direction leads to the odd-parity magnetic toroidal dipole [43,44]. In particular, the latter magnetic ordering induces fascinating physical phenomena, such as nonreciprocal magnon excitations [45], magnetoelectric effect [46], nonlinear longitudinal transports [47,48], nonlinear Hall effect [49,50], nonlinear spin Hall effect [51,52], and unconventional superconductivity [53].
In the present study, we investigate the spontaneous parity breaking by the orbital ordering rather than the magnetic ordering. The orbital ordering has been extensively studied in condensed matter physics [54,55,56,57], since it has been identified in various d-electron materials [58,59,60,61,62,63,64,65,66,67] and f-electron materials [68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96]. Moreover, such orbital degrees of freedom can be a source of further unconventional states, such as a CP2 skyrmion [97,98,99,100] and higher-rank cluster multipole orderings [101]. By considering the staggered orbital ordering in the locally noncentrosymmetric crystals, such as the one-dimensional zigzag chain, two-dimensional honeycomb structure, and three-dimensional diamond structure, we show that the spontaneous antisymmetric spin-split band structure appears according to the breaking of the spatial inversion symmetry. Depending on the type of the orbital orderings, the odd-parity electric toroidal monopole and electric dipole are induced, which results in the chiral-type ASOC and Rashba-type ASOC, respectively. Our results indicate that further intriguing parity-violating physical phenomena are expected under the staggered orbital ordering in locally noncentrosymmetric crystals.
The rest of this paper is organized as follows. In Section 2, we discuss the correspondence between the staggered orbital ordering and odd-parity multipoles in locally noncentrosymmetric crystals based on symmetry analysis. Then, we introduce a minimal tight-binding model consisting of three p orbitals in the one-dimensional zigzag chain system in Section 3. We show the appearance of the antisymmetric spin splitting in the band dispersion under the staggered orbital ordering in Section 4. We describe the induced odd-parity multipoles in the two-dimensional honeycomb structure and the three-dimensional diamond structure in Section 5. We conclude the present result in Section 6.

2. Symmetry Analysis

In this section, we investigate the staggered orbital ordering on the one-dimensional zigzag chain consisting of two sublattices A and B, as shown in Figure 1a, based on the symmetry analysis. Specifically, we suppose the  2 e  site under the space group  P m m a ; the position vector of two sublattices are given by  r A = ( 1 / 4 , 0 , 1 / 4 )  and  r B = ( 3 / 4 , 0 , 1 / 4 ) . For the zigzag-chain structure, we consider the staggered alignment of the electric quadrupoles with five components  ( Q u , Q v , Q y z , Q z x , Q x y )  for  u = 3 z 2 r 2  and  v = x 2 y 2 . The irreducible representations of  ( Q u , Q v , Q y z , Q z x , Q x y )  are given by  ( A g , A g , B 3 g , B 2 g , B 1 g ) , respectively. Since the staggered potential for two sublattices belongs to the irreducible representation  B 1 u , the staggered alignment of  ( Q u , Q v , Q y z , Q z x , Q x y )  belongs to the irreducible representation  ( B 1 u , B 1 u , B 2 u , B 3 u , A u ) , respectively; hereafter, we denote the staggered alignment of  ( Q u , Q v , Q y z , Q z x , Q x y )  as  ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) , Q x y ( s ) ) . The schematic orbital configurations of  ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) , Q x y ( s ) )  are shown in Figure 2. As shown in Section 3, the above electric quadrupole degrees of freedom with the orbital angular moment  l = 2  can be constructed by the p-orbital ( l = 1 ) physical space as the expectation value of the one-body order paramter [102].
The staggered orbital ordering breaks the global inversion symmetry in the one-dimensional zigzag chain, which results in the emergence of odd-parity multipoles in the cluster unit. By adopting symmetry-adapted cluster multipole theory combined with the virtual cluster method [103,104], each staggered ordering accompanies any of electric toroidal monopole  G 0 , electric dipole  ( Q x , Q y , Q z ) , and electric toroidal quadrupole  ( G u , G v , G y z , G z x , G x y )  according to their irreducible representation [105,106]. Here, the electric dipole corresponds to the rank-1 polar vector, while the electric toroidal monopole and quadrupole correspond to the rank-0 pseudoscalar and rank-2 axial tensor, respectively. In the case of  ( Q u ( s ) , Q v ( s ) )  belonging to the  B 1 u  representation,  Q z  and  G x y  are induced. Similarly,  Q y z ( s ) Q z x ( s ) , and  Q x y ( s )  induce  ( Q y , G z x ) ( Q x , G y z ) , and  ( G 0 , G u , G v ) , respectively. Thus, the staggered orbital ordering for  ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) )  leads to polar-type parity-violating phenomena, while that for  Q x y ( s )  leads to chiral-type parity-violating phenomena. For example, the former gives rise to the Rashba-type ASOC, while the latter gives rise to the chiral-type ASOC, where each odd-parity multipole shows the spin-momentum locking as follows:
G 0 k · σ ,
Q ( k × σ ) ,
G u 3 k z σ z k · σ ,
G v k x σ x k y σ y ,
G y z k y σ z + k z σ y ,
G z x k z σ x + k x σ z ,
G x y k x σ y + k y σ x ,
where  k = ( k x , k y , k z )  and  σ = ( σ x , σ y , σ z )  are the wave vector and spin, respectively. When multiple odd-parity multipoles appear at the same time, the resultant ASOC is described by their linear combination. We summarize the correspondence among the staggered orbital orderings, odd-parity multipoles, and ASOCs in the zigzag chain in Table 1. It is noted that the above analyses can be straightforwardly applied to other orderings consisting of two or more orbitals.

3. Model

To show the emergence of the ASOC under the staggered orbital ordering in the zigzag chain along the x direction, we consider a minimal tight-binding model consisting of three p orbitals, ( p x p y p z ), which is given by
H = i j α α σ ( t i j α α c i α σ c j α σ + H . c . ) + λ 2 i α α σ σ c i α σ ( H SOC ) α α σ σ c i α σ i α α σ h i c i α σ ( H MF ) α α c i α σ ,
where  c i α σ  and  c i α σ  represent the creation and annihilation fermion operators at site i, orbital  α = p x p y , and  p z , and spin  σ , respectively. The position vector at sublattice A (B) is given by  ( a / 4 , 0 , a / 4 )  and  ( 3 a / 4 , 0 , a / 4 ) , where a is the lattice constant along the x direction and we set  a = 1  as the length unit. The first term represents the hopping term between sublattices A and B; we adopt two hopping parameters  t p p σ  and  t p p π  for  t i j α α  based on the Slater-Koster parameter. The second term represents the atomic SOC that originates from the relativistic effect;  λ  denotes the magnitude of the atomic SOC. The  6 × 6  matrix  H SOC  is given by
H SOC = 0 i σ z i σ y i σ z 0 i σ x i σ y i σ x 0 ,
where  σ μ  represents the  μ  component of the  2 × 2  Pauli matrix in spin space. The third term represents the mean field to induce the staggered orbital ordered state, which originates from the two-body electron correlations;  h i  denotes the magnitude of the mean field at site i. We consider five types of orbital orderings, whose order parameters are described by the electric quadrupole  ( Q u , Q v , Q y z , Q z x , Q x y ) . The  3 × 3  matrix form in the single atom is given by
H MF , Q u = 1 0 0 0 1 0 0 0 2 , H MF , Q v = 1 0 0 0 1 0 0 0 0 ,
H MF , Q y z = 0 0 0 0 0 1 0 1 0 , H MF , Q z x = 0 0 1 0 0 0 1 0 0 , H MF , Q x y = 0 1 0 1 0 0 0 0 0 .
Owing to the staggered orbital ordering,  h i  is taken as h for sublattice A and  h  for sublattice B. We take  ( t p p σ , t p p π , λ , h ) = ( 0.8 , 0.4 , 0.5 , 0.5 )  in the following calculations. We here do not consider the lattice distortions for simplicity.

4. Results

In this section, we discuss the effect of the staggered orbital ordering in the one-dimensional zigzag-chain model in Equation (8). Since the staggered orbital ordering breaks the spatial inversion symmetry, the ASOC emerges, where the functional form is expected from the symmetry argument in Table 1. For reference, we show the band structure without the mean-field term in Figure 3; there are six bands and each band is doubly degenerate owing to the presence of both the spatial inversion and time-reversal symmetries.
When the mean-field term for the  Q u  multipole, i.e.,  H MF H MF , Q u , is turned on, the antisymmetric spin-split band structure appears, as shown in Figure 4a; the spin polarization with the y component is antisymmetric in terms of the wave number  k x . Meanwhile, there is no spin polarization in the x and z components. This result indicates the emergence of the ASOC in the functional form of  k x σ y , which is attributed to the appearance of the odd-parity multipoles,  Q z k x σ y k y σ x  and  G x y k x σ y + k y σ x , as discussed in Section 2. Thus, the current-induced magnetization, where the y-component of the magnetization is induced by applying the electric current along the x direction, is expected. The ASOC vanishes when  λ  is turned off, which indicates that the relativistic SOC plays an important role. In addition, the ASOC also vanishes for  t p p σ = t p p π , which is attributed to the fact that the off-diagonal hopping between the  p x  and  p z  orbitals with the antisymmetric  k x  dependence vanishes. A similar antisymmetric spin-split band structure emerges when the  Q v ( s )  ordering is considered, as shown in Figure 4b.
For the other staggered orderings, the ASOC is induced as expected by the symmetry. The  Q y z ( s )  ordering leads to the antisymmetric spin splitting in the form of  k x σ z , as shown in Figure 4c, and the  Q x y ( s )  ordering leads to the antisymmetric spin splitting in the form of  k x σ x , as shown in Figure 4d. The longitudinal coupling between  k  and  σ  is owing to the chiral nature without the mirror symmetry. Meanwhile, there is no antisymmetric spin splitting in the  Q z x ( s )  order, since its induced odd-parity multipoles are related to the ASOC in the form of  c 1 k y σ z + c 2 k z σ y , which does not include the  k x  dependence. In this case, the antisymmetric spin splitting can be found when the two-dimensional structure consisting of the zigzag chain is considered so that  k y  or  k z  appears. In this way, the staggered orbital ordered state breaking the spatial inversion symmetry gives rise to the antisymmetric spin splitting in the band structure, which becomes the origin of the parity-violating phenomena, such as the Edelstein effect.
In order to further understand the role of the relativistic SOC in the antisymmetric spin-split band structure, we decompose the SOC term in the model in Equation (8) as follows:
λ x 2 i α α σ σ c i α σ H x SOC c i α σ + λ y 2 i α α σ σ c i α σ H y SOC c i α σ + λ z 2 i α α σ σ c i α σ H z SOC c i α σ
where
H x SOC = 0 0 0 0 0 i σ x 0 i σ x 0 ,
H y SOC = 0 0 i σ y 0 0 0 i σ y 0 0 ,
H z SOC = 0 i σ z 0 i σ z 0 0 0 0 0 ,
where  λ x λ y , and  λ z  represent the amplitude of the x, y, and z spin components of the SOC. This decomposition is performed in order to investigate which spin component plays an important role in inducing the ASOC.
We find that  λ y  plays an important role in inducing the ASOC in the  Q u ( s )  and  Q v ( s )  orderings, which means that ASOC vanishes for  λ y = 0  but remains for  λ x = λ z = 0 . Similarly,  λ x  and  λ z  are essential for the ASOC in the  Q x y ( s )  and  Q y z ( s )  orderings, respectively. This result indicates that the  μ -spin component in the SOC contributes to the ASOC in terms of the  μ -spin component under the staggered orbital ordering. Thus, the three orbital degrees of freedom in the present model are minimal ingredients to induce the ASOC.

5. Discussion

The spontaneous parity breaking by staggered orbital orderings also occurs in other locally noncentrosymmetric lattice structures. We briefly discuss the cases of the two-dimensional honeycomb structure in Section 5.1 and the three-dimensional diamond structure in Section 5.2.

5.1. Honeycomb Structure

We consider the relationship between the staggered orbital ordering and odd-parity multipole in the two-dimensional honeycomb structure [41,107,108,109,110,111,112]. We suppose the  2 c  site under the space group  P 6 / m m m . Similarly to the zigzag-chain case, the staggered orbital ordering leads to the odd-parity multipoles and the ASOCs. For the  ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) , Q x y ( s ) )  orderings, as shown in Figure 5 [ Q 3 b , G v , G x y , ( Q y , G z x ) , ( Q x , G y z ) ]  are induced, where  Q 3 b  represents the electric octupole. Meanwhile, no chiral-type ASOC that originates from  G 0  appears in the honeycomb structure. The correspondence among the staggered orbital ordering, odd-parity multipole, and ASOC is shown in Table 2.

5.2. Diamond Structure

The three-dimensional diamond structure is another lattice structure in locally noncentrosymmetric structure [64,113,114,115,116,117]. By taking the  8 b  site under the space group  F d 3 ¯ m , we consider the staggered orbital ordering in terms of the electric quadrupole in Figure 6. The  ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) , Q x y ( s ) )  orderings accompany the odd-parity multipoles as  ( G u , G v , Q x , Q y , Q z ) , respectively. Similar to the honeycomb structure, the chiral-type ASOC does not appear in the diamond structure. The correspondence among the staggered orbital ordering, odd-parity multipole, and ASOC is shown in Table 3.

6. Conclusions

We have investigated the spontaneous parity breaking under the staggered orbital ordering in locally noncentrosymmetric crystals. Similarly to staggered antiferromagnetic ordering, staggered orbital ordering leads to odd-parity multipoles, which become the microscopic origin of the ASOC and its related physical phenomena. We demonstrate the appearance of the ASOC by taking the one-dimensional zigzag chain as an example. We also classify the odd-parity multipoles in the two-dimensional honeycomb and three-dimensional diamond structures. The present results indicate that staggered-type electronic orderings in locally noncentrosymmetric crystals provide a rich playground for parity-violating physical phenomena.

Funding

This research was supported by JSPS KAKENHI Grants Numbers JP21H01037, JP22H00101, JP22H01183, JP23H04869, JP23K03288, JP23K20827, and by JST CREST (JPMJCR23O4).

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Aizu, K. Polarization, Pyroelectricity, and Ferroelectricity of Ionic Crystals. Rev. Mod. Phys. 1962, 34, 550–576. [Google Scholar] [CrossRef]
  2. Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994, 66, 899–915. [Google Scholar] [CrossRef]
  3. Van Den Brink, J.; Khomskii, D.I. Multiferroicity due to charge ordering. J. Phys. Condens. Matter 2008, 20, 434217. [Google Scholar] [CrossRef]
  4. Ideue, T.; Hamamoto, K.; Koshikawa, S.; Ezawa, M.; Shimizu, S.; Kaneko, Y.; Tokura, Y.; Nagaosa, N.; Iwasa, Y. Bulk rectification effect in a polar semiconductor. Nat. Phys. 2017, 13, 578. [Google Scholar] [CrossRef]
  5. Tokura, Y.; Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 2018, 9, 3740. [Google Scholar] [CrossRef] [PubMed]
  6. Frigeri, P.A.; Agterberg, D.F.; Koga, A.; Sigrist, M. Superconductivity without Inversion Symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 2004, 92, 097001. [Google Scholar] [CrossRef] [PubMed]
  7. Bauer, E.; Sigrist, M. (Eds.) Non-Centrosymmetric Superconductors: Introduction and Overview (Lecture Notes in Physics), 2012th ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
  8. Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Group Theory: Application to the Physics of Condensed Matter; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
  9. Frigeri, P.A.; Agterberg, D.F.; Sigrist, M. Spin susceptibility in superconductors without inversion symmetry. New J. Phys. 2004, 6, 115. [Google Scholar] [CrossRef]
  10. Palazzese, S.; Landaeta, J.; Subero, D.; Bauer, E.; Bonalde, I. Strong antisymmetric spin–orbit coupling and superconducting properties: The case of noncentrosymmetric LaPtSi. J. Phys. Condens. Matter 2018, 30, 255603. [Google Scholar] [CrossRef] [PubMed]
  11. Rashba, E.I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 1960, 2, 1109–1122. [Google Scholar]
  12. Ishizaka, K.; Bahramy, M.; Murakawa, H.; Sakano, M.; Shimojima, T.; Sonobe, T.; Koizumi, K.; Shin, S.; Miyahara, H.; Kimura, A.; et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 2011, 10, 521–526. [Google Scholar] [CrossRef]
  13. Bahramy, M.S.; Arita, R.; Nagaosa, N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B 2011, 84, 041202(R). [Google Scholar] [CrossRef]
  14. Sunko, V.; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O.; Riley, J.; Kasinathan, D.; Haverkort, M.; et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 2017, 549, 492–496. [Google Scholar] [CrossRef] [PubMed]
  15. Takashima, R.; Fujimoto, S. Supercurrent-induced skyrmion dynamics and tunable Weyl points in chiral magnet with superconductivity. Phys. Rev. B 2016, 94, 235117. [Google Scholar] [CrossRef]
  16. Wang, B.Z.; Lu, Y.H.; Sun, W.; Chen, S.; Deng, Y.; Liu, X.J. Dirac-, Rashba-, and Weyl-type spin-orbit couplings: Toward experimental realization in ultracold atoms. Phys. Rev. A 2018, 97, 011605(R). [Google Scholar] [CrossRef]
  17. Zhu, Z.Y.; Cheng, Y.C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402. [Google Scholar] [CrossRef]
  18. Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699. [Google Scholar] [CrossRef]
  19. Ugeda, M.M.; Bradley, A.J.; Shi, S.F.; Felipe, H.; Zhang, Y.; Qiu, D.Y.; Ruan, W.; Mo, S.K.; Hussain, Z.; Shen, Z.X.; et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
  20. Kormányos, A.; Zólyomi, V.; Drummond, N.D.; Burkard, G. Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides. Phys. Rev. X 2014, 4, 011034. [Google Scholar] [CrossRef]
  21. Fu, L. Parity-Breaking Phases of Spin-Orbit-Coupled Metals with Gyrotropic, Ferroelectric, and Multipolar Orders. Phys. Rev. Lett. 2015, 115, 026401. [Google Scholar] [CrossRef]
  22. Kozii, V.; Fu, L. Odd-Parity Superconductivity in the Vicinity of Inversion Symmetry Breaking in Spin-Orbit-Coupled Systems. Phys. Rev. Lett. 2015, 115, 207002. [Google Scholar] [CrossRef]
  23. Venderbos, J.W.F.; Kozii, V.; Fu, L. Odd-parity superconductors with two-component order parameters: Nematic and chiral, full gap, and Majorana node. Phys. Rev. B 2016, 94, 180504(R). [Google Scholar] [CrossRef]
  24. Hayami, S.; Yanagi, Y.; Kusunose, H.; Motome, Y. Electric Toroidal Quadrupoles in the Spin-Orbit-Coupled Metal Cd2Re2O7. Phys. Rev. Lett. 2019, 122, 147602. [Google Scholar] [CrossRef] [PubMed]
  25. Hirose, H.T.; Terashima, T.; Hirai, D.; Matsubayashi, Y.; Kikugawa, N.; Graf, D.; Sugii, K.; Sugiura, S.; Hiroi, Z.; Uji, S. Electronic states of metallic electric toroidal quadrupole order in Cd2Re2O7 determined by combining quantum oscillations and electronic structure calculations. Phys. Rev. B 2022, 105, 035116. [Google Scholar] [CrossRef]
  26. Hayami, S.; Yanagi, Y.; Kusunose, H. Spontaneous antisymmetric spin splitting in noncollinear antiferromagnets without spin-orbit coupling. Phys. Rev. B 2020, 101, 220403. [Google Scholar] [CrossRef]
  27. Murakami, S.; Nagaosa, N.; Zhang, S.C. Dissipationless quantum spin current at room temperature. Science 2003, 301, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
  28. Murakami, S.; Nagaosa, N.; Zhang, S.C. Spin-Hall Insulator. Phys. Rev. Lett. 2004, 93, 156804. [Google Scholar] [CrossRef]
  29. Sinova, J.; Culcer, D.; Niu, Q.; Sinitsyn, N.A.; Jungwirth, T.; MacDonald, A.H. Universal Intrinsic Spin Hall Effect. Phys. Rev. Lett. 2004, 92, 126603. [Google Scholar] [CrossRef] [PubMed]
  30. Fujimoto, S. Emergent Nodal Excitations due to Coexistence of Superconductivity and Antiferromagnetism: Cases with and without Inversion Symmetry. J. Phys. Soc. Jpn. 2006, 75, 083704. [Google Scholar] [CrossRef]
  31. Fujimoto, S. Fermi liquid theory for heavy fermion superconductors without inversion symmetry: Magnetism and transport coefficients. J. Phys. Soc. Jpn. 2007, 76. [Google Scholar] [CrossRef]
  32. Edelstein, V.M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 1990, 73, 233–235. [Google Scholar] [CrossRef]
  33. Yip, S.K. Two-dimensional superconductivity with strong spin-orbit interaction. Phys. Rev. B 2002, 65, 144508. [Google Scholar] [CrossRef]
  34. Fujimoto, S. Magnetoelectric effects in heavy-fermion superconductors without inversion symmetry. Phys. Rev. B 2005, 72, 024515. [Google Scholar] [CrossRef]
  35. Yoda, T.; Yokoyama, T.; Murakami, S. Orbital Edelstein Effect as a Condensed-Matter Analog of Solenoids. Nano Lett. 2018, 18, 916–920. [Google Scholar] [CrossRef] [PubMed]
  36. Massarelli, G.; Wu, B.; Paramekanti, A. Orbital Edelstein effect from density-wave order. Phys. Rev. B 2019, 100, 075136. [Google Scholar] [CrossRef]
  37. Yip, S. Noncentrosymmetric superconductors. Annu. Rev. Condens. Matter Phys. 2014, 5, 15–33. [Google Scholar] [CrossRef]
  38. Sigrist, M.; Agterberg, D.F.; Fischer, M.H.; Goryo, J.; Loder, F.; Rhim, S.H.; Maruyama, D.; Yanase, Y.; Yoshida, T.; Youn, S.J. Superconductors with staggered non-centrosymmetricity. J. Phys. Soc. Jpn. 2014, 83, 061014. [Google Scholar] [CrossRef]
  39. Smidman, M.; Salamon, M.; Yuan, H.; Agterberg, D. Superconductivity and spin–orbit coupling in non-centrosymmetric materials: A review. Rep. Prog. Phys. 2017, 80, 036501. [Google Scholar] [CrossRef] [PubMed]
  40. Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [Google Scholar] [CrossRef]
  41. Hayami, S.; Kusunose, H.; Motome, Y. Emergent spin-valley-orbital physics by spontaneous parity breaking. J. Phys. Condens. Matter 2016, 28, 395601. [Google Scholar] [CrossRef]
  42. Hayami, S.; Kusunose, H. Unified description of electronic orderings and cross correlations by complete multipole representation. J. Phys. Soc. Jpn. 2024, 93, 072001. [Google Scholar] [CrossRef]
  43. Yanase, Y. Magneto-Electric Effect in Three-Dimensional Coupled Zigzag Chains. J. Phys. Soc. Jpn. 2014, 83, 014703. [Google Scholar] [CrossRef]
  44. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous Multipole Ordering by Local Parity Mixing. J. Phys. Soc. Jpn. 2015, 84, 064717. [Google Scholar] [CrossRef]
  45. Hayami, S.; Kusunose, H.; Motome, Y. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering. J. Phys. Soc. Jpn. 2016, 85, 053705. [Google Scholar] [CrossRef]
  46. Cysne, T.P.; Guimarães, F.S.M.; Canonico, L.M.; Rappoport, T.G.; Muniz, R.B. Orbital magnetoelectric effect in zigzag nanoribbons of p-band systems. Phys. Rev. B 2021, 104, 165403. [Google Scholar] [CrossRef]
  47. Yatsushiro, M.; Oiwa, R.; Kusunose, H.; Hayami, S. Analysis of model-parameter dependences on the second-order nonlinear conductivity in PT-symmetric collinear antiferromagnetic metals with magnetic toroidal moment on zigzag chains. Phys. Rev. B 2022, 105, 155157. [Google Scholar] [CrossRef]
  48. Suzuki, Y. Tunneling spin current in systems with spin degeneracy. Phys. Rev. B 2022, 105, 075201. [Google Scholar] [CrossRef]
  49. Wang, C.; Gao, Y.; Xiao, D. Intrinsic Nonlinear Hall Effect in Antiferromagnetic Tetragonal CuMnAs. Phys. Rev. Lett. 2021, 127, 277201. [Google Scholar] [CrossRef] [PubMed]
  50. Kirikoshi, A.; Hayami, S. Microscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metals. Phys. Rev. B 2023, 107, 155109. [Google Scholar] [CrossRef]
  51. Hayami, S.; Yatsushiro, M.; Kusunose, H. Nonlinear spin Hall effect in PT-symmetric collinear magnets. Phys. Rev. B 2022, 106, 024405. [Google Scholar] [CrossRef]
  52. Kondo, H.; Akagi, Y. Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current. Phys. Rev. Res. 2022, 4, 013186. [Google Scholar] [CrossRef]
  53. Sumita, S.; Yanase, Y. Superconductivity in magnetic multipole states. Phys. Rev. B 2016, 93, 224507. [Google Scholar] [CrossRef]
  54. Tokura, Y.; Nagaosa, N. Orbital physics in transition-metal oxides. Science 2000, 288, 462–468. [Google Scholar] [CrossRef] [PubMed]
  55. Khomskii, D.; Mostovoy, M. Orbital ordering and frustrations. J. Phys. A 2003, 36, 9197. [Google Scholar] [CrossRef]
  56. Streltsov, S.V.; Khomskii, D.I. Orbital physics in transition metal compounds: New trends. Phys. Usp. 2017, 60, 1121. [Google Scholar] [CrossRef]
  57. Khomskii, D.I.; Streltsov, S.V. Orbital effects in solids: Basics, recent progress, and opportunities. Chem. Rev. 2021, 121, 2992–3030. [Google Scholar] [CrossRef] [PubMed]
  58. Pen, H.F.; van den Brink, J.; Khomskii, D.I.; Sawatzky, G.A. Orbital Ordering in a Two-Dimensional Triangular Lattice. Phys. Rev. Lett. 1997, 78, 1323–1326. [Google Scholar] [CrossRef]
  59. Kumar, S.; Kampf, A.P.; Majumdar, P. Domain Formation and Orbital Ordering Transition in a Doped Jahn-Teller Insulator. Phys. Rev. Lett. 2006, 97, 176403. [Google Scholar] [CrossRef]
  60. Lv, W.; Wu, J.; Phillips, P. Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides. Phys. Rev. B 2009, 80, 224506. [Google Scholar] [CrossRef]
  61. Lee, C.C.; Yin, W.G.; Ku, W. Ferro-Orbital Order and Strong Magnetic Anisotropy in the Parent Compounds of Iron-Pnictide Superconductors. Phys. Rev. Lett. 2009, 103, 267001. [Google Scholar] [CrossRef]
  62. Kurihara, R.; Mitsumoto, K.; Akatsu, M.; Nemoto, Y.; Goto, T.; Kobayashi, Y.; Sato, M. Critical Slowing Down of Quadrupole and Hexadecapole Orderings in Iron Pnictide Superconductor. J. Phys. Soc. Jpn. 2017, 86, 064706. [Google Scholar] [CrossRef]
  63. Voleti, S.; Maharaj, D.D.; Gaulin, B.D.; Luke, G.; Paramekanti, A. Multipolar magnetism in d-orbital systems: Crystal field levels, octupolar order, and orbital loop currents. Phys. Rev. B 2020, 101, 155118. [Google Scholar] [CrossRef]
  64. Paramekanti, A.; Maharaj, D.D.; Gaulin, B.D. Octupolar order in d-orbital Mott insulators. Phys. Rev. B 2020, 101, 054439. [Google Scholar] [CrossRef]
  65. Hirai, D.; Sagayama, H.; Gao, S.; Ohsumi, H.; Chen, G.; Arima, T.h.; Hiroi, Z. Detection of multipolar orders in the spin-orbit-coupled 5d Mott insulator Ba2MgReO6. Phys. Rev. Res. 2020, 2, 022063. [Google Scholar] [CrossRef]
  66. Mansouri Tehrani, A.; Spaldin, N.A. Untangling the structural, magnetic dipole, and charge multipolar orders in Ba2MgReO6. Phys. Rev. Mater. 2021, 5, 104410. [Google Scholar] [CrossRef]
  67. Lovesey, S.W.; Khalyavin, D.D. Magnetic order and 5d1 multipoles in a rhenate double perovskite Ba2MgReO6. Phys. Rev. B 2021, 103, 235160. [Google Scholar] [CrossRef]
  68. Morin, P.; Schmitt, D.; De Lacheisserie, E.D.T. Magnetic and quadrupolar properties of PrPb3. J. Magn. Magn. Mater. 1982, 30, 257–264. [Google Scholar] [CrossRef]
  69. Takigawa, M.; Yasuoka, H.; Tanaka, T.; Ishizawa, Y. NMR Study on the Spin Structure of CeB6. J. Phys. Soc. Jpn. 1983, 52, 728–731. [Google Scholar] [CrossRef]
  70. Lüthi, B.; Blumenröder, S.; Hillebrands, B.; Zirngiebl, E.; Güntherodt, G.; Winzer, K. Elastic and magnetoelastic effects in CeB6. Z. Phys. 1984, 58, 31–38. [Google Scholar] [CrossRef]
  71. Effantin, J.; Rossat-Mignod, J.; Burlet, P.; Bartholin, H.; Kunii, S.; Kasuya, T. Magnetic phase diagram of CeB6. J. Magn. Magn. Mater. 1985, 47–48, 145–148. [Google Scholar] [CrossRef]
  72. Erkelens, W.A.C.; Regnault, L.P.; Burlet, P.; Rossat-Mignod, J.; Kunii, S.; Kasuya, T. Neutron scattering study of the antiferroquadrupolar ordering in CeB6 and Ce0.75La0.25B6. J. Magn. Magn. Mater. 1987, 63–64, 61–63. [Google Scholar] [CrossRef]
  73. Morin, P.; Rouchy, J.; Yonenobu, K.; Yamagishi, A.; Date, M. Interplay of antiferromagnetic and antiferroquadrupolar interactions in DyAg and other rare earth intermetallic compounds. J. Magn. Magn. Mater. 1989, 81, 247–258. [Google Scholar] [CrossRef]
  74. Nakamura, S.; Goto, T.; Kunii, S.; Iwashita, K.; Tamaki, A. Quadrupole-strain interaction in rare earth hexaborides. J. Phys. Soc. Jpn. 1994, 63, 623–636. [Google Scholar] [CrossRef]
  75. Sakai, O.; Shiina, R.; Shiba, H.; Thalmeier, P. A new interpretation of NMR in quadrupolar ordering phase of CeB6-Consistency with neutron scattering. J. Phys. Soc. Jpn. 1997, 66, 3005–3007. [Google Scholar] [CrossRef]
  76. Shiina, R.; Shiba, H.; Thalmeier, P. Magnetic-field effects on quadrupolar ordering in a Γ 8-quartet system CeB6. J. Phys. Soc. Jpn. 1997, 66, 1741–1755. [Google Scholar] [CrossRef]
  77. Nakao, H.; Magishi, K.i.; Wakabayashi, Y.; Murakami, Y.; Koyama, K.; Hirota, K.; Endoh, Y.; Kunii, S. Antiferro-quadrupole ordering of CeB6 studied by resonant X-ray scattering. J. Phys. Soc. Jpn. 2001, 70, 1857–1860. [Google Scholar] [CrossRef]
  78. Tanaka, Y.; Staub, U.; Katsumata, K.; Lovesey, S.; Lorenzo, J.; Narumi, Y.; Scagnoli, V.; Shimomura, S.; Tabata, Y.; Onuki, Y.; et al. Direct and quantitative determination of the orbital ordering in CeB6 by X-ray diffraction. Europhys. Lett. 2004, 68, 671. [Google Scholar] [CrossRef]
  79. Onimaru, T.; Sakakibara, T.; Aso, N.; Yoshizawa, H.; Suzuki, H.S.; Takeuchi, T. Observation of Modulated Quadrupolar Structures in PrPb3. Phys. Rev. Lett. 2005, 94, 197201. [Google Scholar] [CrossRef] [PubMed]
  80. Ishii, I.; Muneshige, H.; Suetomi, Y.; K. Fujita, T.; Onimaru, T.; T. Matsumoto, K.; Takabatake, T.; Araki, K.; Akatsu, M.; Nemoto, Y.; et al. Antiferro-Quadrupolar Ordering at the Lowest Temperature and Anisotropic Magnetic Field-Temperature Phase Diagram in the Cage Compound PrIr2Zn20. J. Phys. Soc. Jpn. 2011, 80, 093601. [Google Scholar] [CrossRef]
  81. Sakai, A.; Nakatsuji, S. Kondo Effects and Multipolar Order in the Cubic PrTr2Al20 (Tr = Ti, V). J. Phys. Soc. Jpn. 2011, 80, 063701. [Google Scholar] [CrossRef]
  82. Onimaru, T.; Matsumoto, K.T.; Inoue, Y.F.; Umeo, K.; Sakakibara, T.; Karaki, Y.; Kubota, M.; Takabatake, T. Antiferroquadrupolar Ordering in a Pr-Based Superconductor PrIr2Zn20. Phys. Rev. Lett. 2011, 106, 177001. [Google Scholar] [CrossRef]
  83. Sakai, A.; Kuga, K.; Nakatsuji, S. Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTi2Al20. J. Phys. Soc. Jpn. 2012, 81, 083702. [Google Scholar] [CrossRef]
  84. Onimaru, T.; Nagasawa, N.; Matsumoto, K.; Wakiya, K.; Umeo, K.; Kittaka, S.; Sakakibara, T.; Matsushita, Y.; Takabatake, T. Simultaneous superconducting and antiferroquadrupolar transitions in PrRh 2 Zn 20. Phys. Rev. B 2012, 86, 184426. [Google Scholar] [CrossRef]
  85. Matsumura, T.; Yonemura, T.; Kunimori, K.; Sera, M.; Iga, F.; Nagao, T.; Igarashi, J.i. Antiferroquadrupole order and magnetic field induced octupole in CeB6. Phys. Rev. B 2012, 85, 174417. [Google Scholar] [CrossRef]
  86. Tsujimoto, M.; Matsumoto, Y.; Tomita, T.; Sakai, A.; Nakatsuji, S. Heavy-Fermion Superconductivity in the Quadrupole Ordered State of PrV2Al20. Phys. Rev. Lett. 2014, 113, 267001. [Google Scholar] [CrossRef]
  87. Matsumoto, K.T.; Onimaru, T.; Wakiya, K.; Umeo, K.; Takabatake, T. Effect of La Substitution in PrIr2Zn20 on the Superconductivity and Antiferro-Quadrupole Order. J. Phys. Soc. Jpn. 2015, 84, 063703. [Google Scholar] [CrossRef]
  88. Kubo, T.; Kotegawa, H.; Tou, H.; Higashinaka, R.; Nakama, A.; Aoki, Y.; Sato, H. Absence of Magnetic Dipolar Phase Transition and Evolution of Low-Energy Excitations in PrNb2Al20 with Crystal Electric Field Γ3 Ground State: Evidence from 93Nb-NQR Studies. J. Phys. Soc. Jpn. 2015, 84, 074701. [Google Scholar] [CrossRef]
  89. Onimaru, T.; Kusunose, H. Exotic Quadrupolar Phenomena in Non-Kramers Doublet Systems—The Cases of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti)—. J. Phys. Soc. Jpn. 2016, 85, 082002. [Google Scholar] [CrossRef]
  90. Cameron, A.S.; Friemel, G.; Inosov, D.S. Multipolar phases and magnetically hidden order: Review of the heavy-fermion compound Ce1−xLaxB6. Rep. Prog. Phys. 2016, 79, 066502. [Google Scholar] [CrossRef]
  91. Onimaru, T.; Izawa, K.; Matsumoto, K.T.; Yoshida, T.; Machida, Y.; Ikeura, T.; Wakiya, K.; Umeo, K.; Kittaka, S.; Araki, K.; et al. Quadrupole-driven non-Fermi-liquid and magnetic-field-induced heavy fermion states in a non-Kramers doublet system. Phys. Rev. B 2016, 94, 075134. [Google Scholar] [CrossRef]
  92. Portnichenko, P.Y.; Akbari, A.; Nikitin, S.E.; Cameron, A.S.; Dukhnenko, A.V.; Filipov, V.B.; Shitsevalova, N.Y.; Čermák, P.; Radelytskyi, I.; Schneidewind, A.; et al. Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6. Phys. Rev. X 2020, 10, 021010. [Google Scholar] [CrossRef]
  93. Tanida, H.; Muro, Y.; Matsumura, T. La Substitution and Pressure Studies on CeCoSi: A Possible Antiferroquadrupolar Ordering Induced by Pressure. J. Phys. Soc. Jpn. 2018, 87, 023705. [Google Scholar] [CrossRef]
  94. Tanida, H.; Mitsumoto, K.; Muro, Y.; Fukuhara, T.; Kawamura, Y.; Kondo, A.; Kindo, K.; Matsumoto, Y.; Namiki, T.; Kuwai, T.; et al. Successive Phase Transition at Ambient Pressure in CeCoSi: Single Crystal Studies. J. Phys. Soc. Jpn. 2019, 88, 054716. [Google Scholar] [CrossRef]
  95. Matsumura, T.; Kishida, S.; Tsukagoshi, M.; Kawamura, Y.; Nakao, H.; Tanida, H. Structural Transition in the Hidden Ordered Phase of CeCoSi. J Phys. Soc. Jpn. 2022, 91, 064704. [Google Scholar] [CrossRef]
  96. Manago, M.; Ishigaki, A.; Tou, H.; Harima, H.; Tanida, H.; Kotegawa, H. Ferroic quadrupolar ordering in CeCoSi revealed using 59Co NMR measurements. Phys. Rev. B 2023, 108, 085118. [Google Scholar] [CrossRef]
  97. Garaud, J.; Carlström, J.; Babaev, E.; Speight, M. Chiral CP2 skyrmions in three-band superconductors. Phys. Rev. B 2013, 87, 014507. [Google Scholar] [CrossRef]
  98. Akagi, Y.; Amari, Y.; Sawado, N.; Shnir, Y. Isolated skyrmions in the CP2 nonlinear sigma model with a Dzyaloshinskii-Moriya type interaction. Phys. Rev. D 2021, 103, 065008. [Google Scholar] [CrossRef]
  99. Amari, Y.; Akagi, Y.; Gudnason, S.B.; Nitta, M.; Shnir, Y. CP2 skyrmion crystals in an SU(3) magnet with a generalized Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2022, 106, L100406. [Google Scholar] [CrossRef]
  100. Zhang, H.; Wang, Z.; Dahlbom, D.; Barros, K.; Batista, C.D. CP2 skyrmions and skyrmion crystals in realistic quantum magnets. Nat. Commun. 2023, 14, 3626. [Google Scholar] [CrossRef]
  101. Hayami, S.; Tsutsui, S.; Hanate, H.; Nagasawa, N.; Yoda, Y.; Matsuhira, K. Cluster Toroidal Multipoles Formed by Electric-Quadrupole and Magnetic-Octupole Trimers: A Possible Scenario for Hidden Orders in Ca5Ir3O12. J. Phys. Soc. Jpn. 2023, 92, 033702. [Google Scholar] [CrossRef]
  102. Shibata, K.; Naka, M.; Jeschke, H.O.; Otsuki, J. Spin-orbital ordering in alkali superoxides. Phys. Rev. B 2024, 109, 235115. [Google Scholar] [CrossRef]
  103. Suzuki, M.T.; Nomoto, T.; Arita, R.; Yanagi, Y.; Hayami, S.; Kusunose, H. Multipole expansion for magnetic structures: A generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group. Phys. Rev. B 2019, 99, 174407. [Google Scholar] [CrossRef]
  104. Kusunose, H.; Oiwa, R.; Hayami, S. Symmetry-adapted modeling for molecules and crystals. Phys. Rev. B 2023, 107, 195118. [Google Scholar] [CrossRef]
  105. Hayami, S.; Kusunose, H. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals. J. Phys. Soc. Jpn. 2018, 87, 033709. [Google Scholar] [CrossRef]
  106. Hayami, S.; Yatsushiro, M.; Yanagi, Y.; Kusunose, H. Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors. Phys. Rev. B 2018, 98, 165110. [Google Scholar] [CrossRef]
  107. Li, X.; Cao, T.; Niu, Q.; Shi, J.; Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl. Acad. Sci. USA 2013, 110, 3738–3742. [Google Scholar] [CrossRef] [PubMed]
  108. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous parity breaking in spin-orbital coupled systems. Phys. Rev. B 2014, 90, 081115. [Google Scholar] [CrossRef]
  109. Yanagi, Y.; Kusunose, H. Optical Selection Rules in Spin–Orbit Coupled Systems on Honeycomb Lattice. J. Phys. Soc. Jpn. 2017, 86, 083703. [Google Scholar] [CrossRef]
  110. Yanagi, Y.; Hayami, S.; Kusunose, H. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9. Phys. Rev. B 2018, 97, 020404. [Google Scholar] [CrossRef]
  111. Matsumoto, T.; Hayami, S. Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets. Phys. Rev. B 2020, 101, 224419. [Google Scholar] [CrossRef]
  112. Oishi, R.; Umeo, K.; Shimura, Y.; Onimaru, T.; Strydom, A.M.; Takabatake, T. Antiferromagnetic order in the honeycomb Kondo lattice CePt6Al3 induced by Pd substitution. Phys. Rev. B 2021, 104, 104411. [Google Scholar] [CrossRef]
  113. Hayami, S.; Kusunose, H.; Motome, Y. Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure: Implication for the 5d transition metal oxides AOsO4(A = K, Rb, and Cs). Phys. Rev. B 2018, 97, 024414. [Google Scholar] [CrossRef]
  114. Ishitobi, T.; Hattori, K. Magnetoelectric Effects and Charge-Imbalanced Solenoids: Antiferro Quadrupole Orders in a Diamond Structure. J. Phys. Soc. Jpn. 2019, 88, 063708. [Google Scholar] [CrossRef]
  115. Yamaura, J.i.; Hiroi, Z. Crystal structure and magnetic properties of the 5d transition metal oxides AOsO4(A = K, Rb, Cs). Phys. Rev. B 2019, 99, 155113. [Google Scholar] [CrossRef]
  116. Maharaj, D.D.; Sala, G.; Stone, M.B.; Kermarrec, E.; Ritter, C.; Fauth, F.; Marjerrison, C.A.; Greedan, J.E.; Paramekanti, A.; Gaulin, B.D. Octupolar versus Néel Order in Cubic 5d2 Double Perovskites. Phys. Rev. Lett. 2020, 124, 087206. [Google Scholar] [CrossRef]
  117. Winkler, R.; Zülicke, U. Theory of electric, magnetic, and toroidal polarizations in crystalline solids with applications to hexagonal lonsdaleite and cubic diamond. Phys. Rev. B 2023, 107, 155201. [Google Scholar] [CrossRef]
Figure 1. Locally noncentrosymmetric crystal structures consisting of two sublattices A and B, (a) the one-dimensional zigzag chain, (b) the two-dimensional honeycomb structure, and (c) the three-dimensional diamond structure. In each case, the odd-parity multipoles are induced when the staggered electronic orderings occur.
Figure 1. Locally noncentrosymmetric crystal structures consisting of two sublattices A and B, (a) the one-dimensional zigzag chain, (b) the two-dimensional honeycomb structure, and (c) the three-dimensional diamond structure. In each case, the odd-parity multipoles are induced when the staggered electronic orderings occur.
Crystals 14 00632 g001
Figure 2. Schematic pictures of the staggered orbital alignments in terms of the electric quadrupole moment on the one-dimensional zigzag chain. The color represents the phase factor of the wave function.
Figure 2. Schematic pictures of the staggered orbital alignments in terms of the electric quadrupole moment on the one-dimensional zigzag chain. The color represents the phase factor of the wave function.
Crystals 14 00632 g002
Figure 3. The electronic band structure in the one-dimensional zigzag chain without the mean-field term.
Figure 3. The electronic band structure in the one-dimensional zigzag chain without the mean-field term.
Crystals 14 00632 g003
Figure 4. The electronic band structure in the one-dimensional zigzag chain under the staggered orbital orderings with (a Q u ( s ) , (b Q v ( s ) , (c Q y z ( s ) , and (d Q x y ( s )  at  h = 0.5 . The contour represents (a,b) the y-spin polarization, (c) the z-spin polarization, and (d) the x-spin polarization at each wave vector.
Figure 4. The electronic band structure in the one-dimensional zigzag chain under the staggered orbital orderings with (a Q u ( s ) , (b Q v ( s ) , (c Q y z ( s ) , and (d Q x y ( s )  at  h = 0.5 . The contour represents (a,b) the y-spin polarization, (c) the z-spin polarization, and (d) the x-spin polarization at each wave vector.
Crystals 14 00632 g004
Figure 5. Schematic pictures of the staggered orbital alignments in terms of the electric quadrupole moment on the two-dimensional honeycomb structure. The color represents the phase factor of the wave function.
Figure 5. Schematic pictures of the staggered orbital alignments in terms of the electric quadrupole moment on the two-dimensional honeycomb structure. The color represents the phase factor of the wave function.
Crystals 14 00632 g005
Figure 6. Schematic pictures of the staggered orbital alignments in terms of the electric quadrupole moment on the three-dimensional diamond structure. The color represents the phase factor of the wave function.
Figure 6. Schematic pictures of the staggered orbital alignments in terms of the electric quadrupole moment on the three-dimensional diamond structure. The color represents the phase factor of the wave function.
Crystals 14 00632 g006
Table 1. Classification of staggered orbital orderings in the one-dimensional zigzag chain, which is constructed by the  2 e  site under the space group  P m m a ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) , Q x y ( s ) )  stand for the electric quadrupole ( u = 3 z 2 r 2  and  v = x 2 y 2 ), where the superscript  ( s )  represents the staggered alignment. In each staggered quadrupole ordering, the irreducible representations (IR) for the orbital and cluster in the unit cell are shown. The fourth column represents the odd-parity multipoles up to rank 2;  G 0  is the electric dipole,  ( Q x , Q y , Q z )  are the electric dipole, and  ( G u , G v , G y z , G z x , G x y )  are the electric toroidal quadrupole. The fifth column represents the antisymmetric spin–orbit coupling (ASOC), where  c 1 c 2 , and  c 3  are numerical coefficients.
Table 1. Classification of staggered orbital orderings in the one-dimensional zigzag chain, which is constructed by the  2 e  site under the space group  P m m a ( Q u ( s ) , Q v ( s ) , Q y z ( s ) , Q z x ( s ) , Q x y ( s ) )  stand for the electric quadrupole ( u = 3 z 2 r 2  and  v = x 2 y 2 ), where the superscript  ( s )  represents the staggered alignment. In each staggered quadrupole ordering, the irreducible representations (IR) for the orbital and cluster in the unit cell are shown. The fourth column represents the odd-parity multipoles up to rank 2;  G 0  is the electric dipole,  ( Q x , Q y , Q z )  are the electric dipole, and  ( G u , G v , G y z , G z x , G x y )  are the electric toroidal quadrupole. The fifth column represents the antisymmetric spin–orbit coupling (ASOC), where  c 1 c 2 , and  c 3  are numerical coefficients.
OPIR (Orbital)IR (Cluster)Odd-Parity MultipoleASOC
Q u ( s ) A g B 1 u Q z G x y c 1 k x σ y + c 2 k y σ x
Q v ( s ) A g B 1 u Q z G x y c 1 k x σ y + c 2 k y σ x
Q y z ( s ) B 3 g B 2 u Q y G z x c 1 k z σ x + c 2 k x σ z
Q z x ( s ) B 2 g B 3 u Q x G y z c 1 k y σ z + c 2 k z σ y
Q x y ( s ) B 1 g A u G 0 G u G v c 1 k x σ x + c 2 k y σ y + c 3 k z σ z
Table 2. Classification of staggered orbital orderings in the two-dimensional honeycomb structure, which is constructed by the  2 c  site under the space group  P 6 / m m m . For the  Q u ( s )  ordering with the odd-parity electric octupole  Q 3 b , the antisymmetric spin polarization also occurs in the x- and y-spin components, which is expressed as  k z ( k x 2 k y 2 ) σ x 2 k x k y k z σ y k x ( k x 2 3 k y 2 ) σ z . We take the x axis as the  C 2  rotation axis. The notations in the table are the same as those in Table 1.
Table 2. Classification of staggered orbital orderings in the two-dimensional honeycomb structure, which is constructed by the  2 c  site under the space group  P 6 / m m m . For the  Q u ( s )  ordering with the odd-parity electric octupole  Q 3 b , the antisymmetric spin polarization also occurs in the x- and y-spin components, which is expressed as  k z ( k x 2 k y 2 ) σ x 2 k x k y k z σ y k x ( k x 2 3 k y 2 ) σ z . We take the x axis as the  C 2  rotation axis. The notations in the table are the same as those in Table 1.
OPIR (Orbital)IR (Cluster)Odd-Parity MultipoleASOC
Q u ( s ) A g B 2 u Q 3 b k x ( k x 2 3 k y 2 ) σ z
Q z x ( s ) E 1 g E 2 u G v k x σ x k y σ y
Q y z ( s ) E 1 g E 2 u G x y k x σ y + k y σ x
Q v ( s ) E 2 g E 1 u Q y G z x c 1 k y σ z + c 2 k z σ y
Q x y ( s ) E 2 g E 1 u Q x G y z c 1 k x σ y + c 2 k y σ x
Table 3. Classification of staggered orbital orderings in the three-dimensional diamond structure, which is constructed by the  8 b  site under the space group  F d 3 ¯ m . The notations in the table are the same as those in Table 1.
Table 3. Classification of staggered orbital orderings in the three-dimensional diamond structure, which is constructed by the  8 b  site under the space group  F d 3 ¯ m . The notations in the table are the same as those in Table 1.
OPIR (Orbital)IR (Cluster)Odd-Parity MultipoleASOC
Q u ( s ) E g E u G u 2 k z σ z k x σ x k y σ y
Q v ( s ) E g E u G v k x σ x k y σ y
Q y z ( s ) T 2 g T 1 u Q x k y σ z k z σ y
Q z x ( s ) T 2 g T 1 u Q y k z σ x k x σ z
Q x y ( s ) T 2 g T 1 u Q z k x σ y k y σ x
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hayami, S. Cluster Odd-Parity Multipoles by Staggered Orbital Ordering in Locally Noncentrosymmetric Crystals. Crystals 2024, 14, 632. https://doi.org/10.3390/cryst14070632

AMA Style

Hayami S. Cluster Odd-Parity Multipoles by Staggered Orbital Ordering in Locally Noncentrosymmetric Crystals. Crystals. 2024; 14(7):632. https://doi.org/10.3390/cryst14070632

Chicago/Turabian Style

Hayami, Satoru. 2024. "Cluster Odd-Parity Multipoles by Staggered Orbital Ordering in Locally Noncentrosymmetric Crystals" Crystals 14, no. 7: 632. https://doi.org/10.3390/cryst14070632

APA Style

Hayami, S. (2024). Cluster Odd-Parity Multipoles by Staggered Orbital Ordering in Locally Noncentrosymmetric Crystals. Crystals, 14(7), 632. https://doi.org/10.3390/cryst14070632

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop