Directional Acoustic Bulk Waves in a 2D Phononic Crystal
Abstract
:1. Introduction
2. Model System
3. Conditions of Continuity
3.1. Interfaces (II) and (VII)
3.2. Interfaces (I) and (VIII)
3.3. Interfaces (III) and (V)
3.4. Interfaces (IV) and (VI)
4. DRAK Modes
4.1. Case I
4.2. Case II
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, H.; Yang, Y.; Zhang, B. Topological acoustics. Nat. Rev. Mater. 2022, 7, 975. [Google Scholar] [CrossRef]
- Estep, N.; Sounas, D.; Soric, J.; Alù, A. Magnetic-Free Non-Reciprocity Based on Parametrically Modulated Coupled-Resonator Loops. Nat. Phys. 2014, 10, 923. [Google Scholar] [CrossRef]
- Fleury, R.; Khanikaev, A.; Alù, A. Floquet Topological Insulators for Sound. Nat. Commun. 2016, 7, 11744. [Google Scholar] [CrossRef] [PubMed]
- Swinteck, N.; Matsuo, S.; Runge, K.; Vasseur, J.O.; Lucas, P.; Deymier, P.A. Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice. J. Appl. Phys. 2015, 118, 063103. [Google Scholar] [CrossRef]
- Trainiti, G.; Ruzzene, M. Non-reciprocal elastic wave propagation in spatiotemporal periodic structures. New J. Phys. 2016, 18, 083047. [Google Scholar] [CrossRef]
- Nassar, H.; Chen, H.; Norris, A.N.; Haberman, M.R.; Huang, G.L. Non-reciprocal wave propagation in modulated elastic metamaterials. Proc. R. Soc. 2017, 473, 20170188. [Google Scholar] [CrossRef] [PubMed]
- Tessier Brothelande, S.; Croënne, C.; Allein, F.; Vasseur, J.O.; Amberg, M.; Giraud, F.; Dubus, B. Experimental evidence of nonreciprocal propagation in space-time modulated piezoelectric phononic crystals. Appl. Phys. Lett. 2023, 123, 201701. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Fleury, R.; Mousavi, H.; Alù, A. Topologically Robust Sound Propagation in an Angular-Momentum-Biased Graphene-Like Resonator Lattice. Nat. Commun. 2015, 6, 8260. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lu, L.; Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 2015, 115, 104302. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Pal, R.K.; Ruzzene, M. Observation of topological valley modes in an elastic hexagonal lattice. Phys. Rev. B. 2017, 96, 134307. [Google Scholar] [CrossRef]
- Pal, R.K.; Schaeffer, M.; Ruzzene, M. Helical edge states and topological phase transitions in phononic systems using bi-layered lattices. J. Appl. Phys. 2016, 119, 084305. [Google Scholar] [CrossRef]
- Deymier, P.A.; Runge, K.; Khanikaev, A.; Alù, A. Pseudo-Spin Polarized One-Way Elastic Wave Eigenstates in One-Dimensional Phononic Superlattices. Crystals 2024, 14, 92. [Google Scholar] [CrossRef]
- Deymier, P.A.; Vasseur, J.O.; Runge, K.; Khanikaev, A.; Alù, A. Immunity to Backscattering of Bulk Waves in Topological Acoustic Superlattices. Crystals 2024, 14, 344. [Google Scholar] [CrossRef]
- Pérot, A.; Fabry, C. On the application of interference phenomena to the solution of various problems of spectroscopy and metrology. Astrophys. J. 1899, 9, 87. [Google Scholar] [CrossRef]
- Rosiek, C.A.; Arregui, G.; Vladimirova, A.; Albrechtsen, M.; Lahijani, B.V.; Christiansen, R.E.; Stobbe, S. Observation of strong backscattering in valley-Hall photonic topological interface modes. Nat. Photonics 2023, 17, 386. [Google Scholar] [CrossRef]
- Rechtsman, M.C. Reciprocal topological photonic crystals allow backscattering. Nat. Photonics 2023, 17, 383. [Google Scholar] [CrossRef]
- Zhang, G.; He, Z.; Wang, S.; Hong, J.; Cong, Y.; Gu, S. Elastic foundation-introduced defective phononic crystals for tunable energy harvesting. Mech. Mater. 2024, 191, 104909. [Google Scholar] [CrossRef]
- Aigner, R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. In Proceedings of the 2008 IEEE International Ultrasonic Symposium, Beijing, China, 2–5 November 2008; p. 582. [Google Scholar]
- Yang, Y.; Dejous, C.; Hallil, H. Trends and applications of surface and bulk acoustic wave devices: A review. Micromachines 2023, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, X.; Cai, H.; Mohammad Ali, M.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface acoustic wave devices for sensor applications. J. Semicond. 2016, 37, 021001. [Google Scholar] [CrossRef]
Interfaces | Resonance | Dispersion | Bloch Wave Number | Amplitudes |
---|---|---|---|---|
(II) & (VII) | odd | odd | ||
even | even | |||
(I) & (VIII) | odd | odd | , | |
even | even | , | ||
(III) & (V) | odd | odd | ||
even | even | |||
(IV) & (VI) | odd | odd | ||
even | even |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deymier, P.A.; Vasseur, J.O.; Runge, K.; Muralidharan, K.; Khanikaev, A.; Alù, A. Directional Acoustic Bulk Waves in a 2D Phononic Crystal. Crystals 2024, 14, 674. https://doi.org/10.3390/cryst14080674
Deymier PA, Vasseur JO, Runge K, Muralidharan K, Khanikaev A, Alù A. Directional Acoustic Bulk Waves in a 2D Phononic Crystal. Crystals. 2024; 14(8):674. https://doi.org/10.3390/cryst14080674
Chicago/Turabian StyleDeymier, Pierre A., Jérôme O. Vasseur, Keith Runge, Krishna Muralidharan, Alexander Khanikaev, and Andrea Alù. 2024. "Directional Acoustic Bulk Waves in a 2D Phononic Crystal" Crystals 14, no. 8: 674. https://doi.org/10.3390/cryst14080674