Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type Bi12TiO20 and Bi12SiO20 Single Crystals
Abstract
:1. Introduction
2. Results and Discussions
2.1. Room Temperature Material Constants
Electro-Elastic Constants | Symbols | BTO | BTO [8] | BSO | BSO [13] |
---|---|---|---|---|---|
Relative Dielectric Permittivities | ε11 | 47.9 | 47.0 | 48.2 | 47.0 |
Dielectric Loss | tanδ | 0.01% | – | 0.09% | – |
Elastic Compliance Constants sE (pm2/N) | s11 | 9.8 | 8.7 * | 10.3 | 8.5 |
s12 | −1.8 | −1.6 * | −2.7 | 1.5 | |
s44 | 40.3 | 40.7 * | 40.4 | 40.0 | |
Elastic Stiffness Constants cE (1010 N/m2) | c11 | 11.2 | 12.5 | 11.9 | 12.8 |
c12 | 2.6 | 2.8 | 4.3 | 2.8 | |
c44 | 2.5 | 2.4 | 2.5 | 2.5 | |
Piezoelectric Strain coefficients (pC/N) | d14 | 42.8 | 45.8 # | 47.7 | 40.0 |
Piezoelectric Stress coefficients (C/m2) | e14 | 1.1 | 1.1 | 1.2 | 1.0 |
Coupling Factor (%) | k14 | 32.8 | – | 36.3 | – |
2.2. Orientation Dependence of Longitudinal Piezoelectric Coefficient
2.3. Temperature Dependence of the Electrical Resistivity
2.4. Temperature Dependence of Dielectric and Piezoelectric Properties
3. Experimental Section
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abrahams, S.C.; Jamieson, P.B.; Bernstein, J.L. Crystal Structure of Piezoelectric Bismuth Germanium Oxide Bi12GeO20. J. Chem. Phys. 1967, 47, 4034–4041. [Google Scholar]
- Abrahams, S.C.; Bernstein, J.L.; Svensson, C. Crystal structure and absolute piezoelectric d14 coefficient in laevorotatory Bi12SiO20. J. Chem. Phys. 1979, 71, 788–792. [Google Scholar] [CrossRef]
- Sillén, L.G. X-ray Studies on Oxides and Oxyhlaides of Trivalent Bismuth. Inaugural Dissertation, Degree-Granting University, Stockholm, Sweden, 1940. [Google Scholar]
- Efendiev, S.M.; Kulieva, T.Z.; Lomonov, V.A.; Chiragov, M.I.; Grandolfo, M.; Vecchia, P. Crystal Structure of Bismuth Titanium Oxide Bi12TiO20. Phys. Status Solidi A 1981, 74, K17–K21. [Google Scholar]
- Wiehl, L.; Friedrich, A.; Haussühl, E.; Morgenroth, W.; Grzechnik, A.; Friese, K.; Winkler, B.; Refson, K.; Milman, V. Structural compression and vibrational properties of Bi12SiO20 sillenite from experiment and theory. J. Phys. Condens. Matter 2010, 22, 505401:1–505401:50. [Google Scholar]
- Aldrich, R.E.; Hou, S.L.; Harvill, M.L. Electrical and Optical Properties of Bi12SiO20. J. Appl. Phys. 1971, 42, 493–494. [Google Scholar] [CrossRef]
- Peltier, M.; Micheron, F. Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20. J. Appl. Phys. 1977, 48, 3683–3690. [Google Scholar] [CrossRef]
- Burimov, N.; Mandel, A.; Reshet’ko, A.; Shandarov, S.; Volkov, V.; Kargin, Yu. Elastic and piezoelectric constants of Bi12TiO20 crystals. Opt. Mater. 1995, 4, 179–181. [Google Scholar] [CrossRef]
- Vasconcelos, I.F.; Pimenta, M.A.; Sombra, A.S.B. Optical properties of Bi12SiO20 (BSO) and Bi12TiO20 (BTO) obtained by mechanical alloying. J. Mater. Sci. 2001, 36, 587–592. [Google Scholar] [CrossRef]
- Günter, P.; Huignard, J.P. Photo-refractive Materials and their Applications; Springer Verlag: Berlin, Germany, 1988; Volume I. [Google Scholar]
- Coya, C.; Zaldo, C.; Volkov, V.V.; Egorysheva, A.V.; Polgár, K.; Péter, A. Gallium-induced inhibition of the photorefractive properties of sillenite crystals. J. Opt. Soc. Am. B 1996, 13, 908–991. [Google Scholar] [CrossRef]
- Buse, K. Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods. Appl. Phys. B 1997, 64, 273–291. [Google Scholar] [CrossRef]
- Schweppe, H.; Quadflieg, P. Electromechanical Properties of Bismuth Silicon Oxide (Bi12SiO20). IEEE Trans. Sonics Ultrason. 1974, 21, 56–57. [Google Scholar] [CrossRef]
- Papazoglou, D.G.; Apostolidis, A.G.; Vanidhis, E.D. Measurement of the electro-optic coefficient of Bi12GeO20 (BGO), Bi12TiO20 (BTO) crystals. Synth. Met. 1996, 83, 281–285. [Google Scholar] [CrossRef]
- Kamenov, V.P.; Shamonina, E.; Ringhofer, K.H.; Nippolainen, E.; Prokofiev, V.V.; Kamshilin, A.A. Photorefractive light scattering families in 111-cut Bi12TiO20 crystals with an external electric AC field. Phys. Rev. E 2000, 63, 016607:1–016607:6. [Google Scholar]
- Xu, H.H.; Zhang, Y.Y.; Zhang, H.J.; Yu, H.H.; Pan, Z.B.; Wang, Y.C.; Sun, S.Q.; Wang, J.Y.; Boughton, R.I. Growth and characterization of Nd:Bi12SiO20 single crystal. Opt. Commun. 2012, 285, 3961–3966. [Google Scholar] [CrossRef]
- Gorfman, S.; Hüsecken, A.; Burianek, M.; Mühlberg, M.; Pietsch, U. Investigation of microscopic origin of piezoelectric effect in Bi12SiO20. Available Online: http://photon-science.desy.de/annual_report/files/2012/20122312.pdf (accessed on 23 December 2012).
- Wojdowsk, W. Vibrational Modes in Bi12GeO20 and Bi12SiO20 Crystals. Phys. Status Solidi B 1985, 130, 121–130. [Google Scholar] [CrossRef]
- Neov, S.; Marinova, V.; Reehuis, M.; Sonntag, R. Neutron-diffraction study of Bi12MO20 single crystals with sillenite structure (M = Si, Si0.995Mn0.005, Bi0.53Mn0.47). Appl. Phys. A 2002, 74, S1016–S1018. [Google Scholar] [CrossRef]
- IEEE Standard on Piezoelectricity; ANSI/IEEE Std 176–1987; American Standards National Institute: New York, NY, USA, 1987.
- Liao, H.B.; Xu, L.Y.; Liu, J.C. The crystal growth of Bi12TiO20. J. Inorg. Mater. 1994, 3, 257–267. (In Chinese) [Google Scholar]
- Bechmann, R.; Fair, I.E. IRE standards on piezoelectric crystals: Determination of the elastic, piezoelectric, and dielectric constants- the electromechanical coupling factor. In Proceedings of the IRE, New York, NY, USA, 6–8 May 1958; Volume 46, pp. 764–778.
- Bechmann, R. Contour modes of square plates excited piezoelectrically and Determination of elastic and piezoelectric coefficients. Proc. Phys. Soc. B 1951, 64, 323–337. [Google Scholar] [CrossRef]
- Zhang, S.J.; Jiang, W.H.; Meyer, R.J., Jr.; Li, F.; Luo, J.; Cao, W.W. Measurements of face shear properties in relaxor-PbTiO3 single crystals. J. Appl. Phys. 2011, 110, 064106:1–064106:6. [Google Scholar]
- Mason, W.P. Elastic, piezoelectric and dielectric properties of sodium, chlorate and sodium bromated. Phys. Rev. 1946, 70, 529–537. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shen, C.; Zhang, H.; Zhang, Y.; Xu, H.; Yu, H.; Wang, J.; Zhang, S. Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type Bi12TiO20 and Bi12SiO20 Single Crystals. Crystals 2014, 4, 141-151. https://doi.org/10.3390/cryst4020141
Shen C, Zhang H, Zhang Y, Xu H, Yu H, Wang J, Zhang S. Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type Bi12TiO20 and Bi12SiO20 Single Crystals. Crystals. 2014; 4(2):141-151. https://doi.org/10.3390/cryst4020141
Chicago/Turabian StyleShen, Chuanying, Huaijin Zhang, Yuanyuan Zhang, Honghao Xu, Haohai Yu, Jiyang Wang, and Shujun Zhang. 2014. "Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type Bi12TiO20 and Bi12SiO20 Single Crystals" Crystals 4, no. 2: 141-151. https://doi.org/10.3390/cryst4020141
APA StyleShen, C., Zhang, H., Zhang, Y., Xu, H., Yu, H., Wang, J., & Zhang, S. (2014). Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type Bi12TiO20 and Bi12SiO20 Single Crystals. Crystals, 4(2), 141-151. https://doi.org/10.3390/cryst4020141