Evaluation of Strength Properties of Sand Modified with Organic Polymers
Abstract
:1. Introduction
2. Experimental Outlines
2.1. Materials
2.1.1. Sand
2.1.2. Organic Polymers
2.2. Experimental Methods
2.2.1. Unconfined Compression Test
2.2.2. Direct Shear Test
2.2.3. Tensile Test
3. Test Results
3.1. Unconfined Compression Test
3.2. Direct Shear Test
3.3. Tensile Test
4. Discussion
5. Conclusions
- The addition of polymer had significant effects on the strength characteristics of reinforced specimens. The unconfined compressive strength, cohesion, and tensile strength of specimens with the same dry density increased with the increasing polymer concentration. Moreover, specimen dry density is an important factor for the reinforced specimen strength characteristics. The unconfined compressive strength and shear strength of specimens reinforced with same polymer concentration increased with increasing sand density, and the reinforced specimen with density 1.50 g/cm3 had the highest value of tensile strength, the one with density 1.60 g/cm3 had the lowest value, and the other one with density 1.40 g/cm3 had a moderate value.
- When the organic polymer solution was applied to sand, the polymer membranes formed by the mixture of polymer and water enwrapped the sand particles and interlinked them to form a stable structure. The higher the polymer concentration, the greater the content of polymer membranes to fill the sand voids and enwrap the sand particles to keep the sand structure stable. The efficiency of this phenomenon is influenced by dry density, and at an optimal density of sand, the process of filling the sand voids and enwrapping the sand particles gets easier, and strong bonding and interlocking forces among sand particles are observed. These results provide a reasonable and effective theoretical basis for the reinforcement of the sand soil area.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbawi, Z.W.S. Studying strength and stiffness characteristics of sand stabilized with cement and lime additives. Eng. Technol. J. 2015, 33, 1857–1875. [Google Scholar]
- Cepuritis, R.; Mørtsell, E. Possibilities of improving crushed sand performance in fresh concrete by washing: A case study. Mater. Struct. 2016, 49, 1–16. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Lee, S. TiO2 nanoparticle sorption to sand in the presence of natural organic matter. Environ. Earth Sci. 2015, 73, 5585–5591. [Google Scholar] [CrossRef]
- Latifi, N.; Rashid, A.S.A.; Siddiqua, S.; Horpibulsuk, S. Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution—A green soil stabilizer. Appl. Clay Sci. 2015, 118, 195–206. [Google Scholar] [CrossRef]
- Chang, I.; Cho, G.C. Strengthening of korean residual soil with β-1,3/1,6-glucan biopolymer. Constr. Build. Mater. 2012, 30, 30–35. [Google Scholar] [CrossRef]
- Joel, M.; Agbede, I.O. Mechanical-cement stabilization of laterite for use as flexible pavement material. J. Mater. Civ. Eng. 2011, 23, 146–152. [Google Scholar] [CrossRef]
- Latifi, N.; Marto, A.; Eisazadeh, A. Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro- and micro-structural considerations. Environ. Earth Sci. 2015, 73, 1133–1141. [Google Scholar] [CrossRef]
- Mousavi, F.; Abdi, E.; Rahimi, H. Effect of polymer stabilizer on swelling potential and cbr of forest road material. KSCE J. Civ. Eng. 2014, 18, 2064–2071. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Jain, D.; Vishwakarma, S. Frictional resistance of drilling fluids as a borehole stabilizers. Int. J. Geo-Eng. 2016, 7, 12. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Majid, M.Z.A.; Rashid, A.S.A. Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Ma, G.; Ran, F.; Feng, E.; Dong, Z.; Lei, Z. Effectiveness of an eco-friendly polymer composite sand-fixing agent on sand fixation. Water Air Soil Pollut. 2015, 226, 221. [Google Scholar] [CrossRef]
- Mohsin, M.A.; Attia, N.F. Inverse emulsion polymerization for the synthesis of high molecular weight polyacrylamide and its application as sand stabilizer. Int. J. Polym. Sci. 2015, 2015, 436583. [Google Scholar] [CrossRef]
- Naeini, S.A.; Naderinia, B.; Izadi, E. Unconfined compressive strength of clayey soils stabilized with waterborne polymer. KSCE J. Civ. Eng. 2012, 16, 943–949. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 2013, 47, 1468–1478. [Google Scholar] [CrossRef]
- Onyejekwe, S.; Ghataora, G.S. Soil stabilization using proprietary liquid chemical stabilizers: Sulphonated oil and a polymer. Bull. Eng. Geol. Environ. 2015, 74, 651–665. [Google Scholar] [CrossRef]
- Naeini, S.A.; Ghorbanalizadeh, M. Effect of wet and dry conditions on strength of silty sand soils stabilized with epoxy resin polymer. J. Appl. Sci. 2010, 10, 2839–2846. [Google Scholar] [CrossRef]
- Marto, A.; Latifi, N.; Eisazadeh, A. Effect of non-traditional additives on engineering and microstructural characteristics of laterite soil. Arab. J. Sci. Eng. 2014, 39, 6949–6958. [Google Scholar] [CrossRef]
- Sun, H.H.; Lee, E.Y. Restoration of eroded coastal sand dunes using plant and soil-conditioner mixture. Int. Biodeterior. Biodegrad. 2016, 113, 161–168. [Google Scholar]
- Yang, J.; Wang, F.; Fang, L.; Tan, T. The effects of aging tests on a novel chemical sand-fixing agent—Polyaspartic acid. Compos. Sci. Technol. 2007, 67, 2160–2164. [Google Scholar] [CrossRef]
- Ate, A. The effect of polymer-cement stabilization on the unconfined compressive strength of liquefiable soils. Int. J. Polym. Sci. 2013, 2013, 155–171. [Google Scholar] [CrossRef]
- Liu, J.; Qi, X.; Zhang, D.; Feng, Q.; Wang, Y.; Kanungo, D.P. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand. Adv. Mater. Sci. Eng. 2017, 2017, 5240186. [Google Scholar] [CrossRef]
- Liu, J.; Shi, B.; Lu, Y.; Jiang, H.; Huang, H.; Wang, G.; Kamai, T. Effectiveness of a new organic polymer sand-fixing agent on sand fixation. Environ. Earth Sci. 2012, 65, 589–595. [Google Scholar] [CrossRef]
- ASTM D2166-00: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil; ASTM: Philadelphia, PA, USA, 2000.
- ASTM D3080-98: Standard Test Method for Direct Shear Test of under Drained Conditions; ASTM: Philadelphia, PA, USA, 2000.
Serial Number | Polymer Concentration (%) | Dry Density (g/cm3) | Void Ratio es | Relative Density Dr (%) | Peak Strength (kPa)/Standard Deviations (kPa) | Residual Strength (kPa)/Standard Deviations (kPa) | Axial Strain of Failure (%)/Standard Deviations (kPa) | Elasticity Modulus E (MPa)/Standard Deviations (kPa) | Failure Modulus Ef (MPa)/Standard Deviations (kPa) |
---|---|---|---|---|---|---|---|---|---|
S1 | water | 1.40 | 0.89 | 21.05 | / | / | / | / | / |
S2 | 10 | 1.40 | 0.89 | 21.05 | 62.34/2.37 | 10.46/1.47 | 10.88/0.05 | 1.244/0.05 | 0.573/0.00 |
S3 | 20 | 1.40 | 0.89 | 21.05 | 120.83/2.35 | 22.52/1.34 | 10.75/0.17 | 2.594/0.10 | 1.124/0.01 |
S4 | 30 | 1.40 | 0.89 | 21.05 | 169.22/3.82 | 56.95/1.61 | 10.11/0.29 | 5.629/0.29 | 1.674/0.02 |
S5 | 40 | 1.40 | 0.89 | 21.05 | 201.94/3.20 | 75.29/1.61 | 8.87/0.38 | 8.526/0.34 | 2.277/0.05 |
S6 | 50 | 1.40 | 0.89 | 21.05 | 245.28/3.44 | 97.73/2.21 | 7.08/0.40 | 11.494/0.78 | 3.464/0.07 |
S7 | water | 1.50 | 0.76 | 55.26 | / | / | / | / | / |
S8 | 10 | 1.50 | 0.76 | 55.26 | 78.15/3.28 | 20.11/1.34 | 9.68/0.10 | 1.564/0.05 | 0.807/0.00 |
S9 | 20 | 1.50 | 0.76 | 55.26 | 197.96/3.63 | 37.77/2.89 | 9.01/0.05 | 5.057/0.13 | 2.197/0.04 |
S10 | 30 | 1.50 | 0.76 | 55.26 | 238.65/3.22 | 65.87/1.72 | 8.65/0.16 | 6.380/0.15 | 2.759/0.05 |
S11 | 40 | 1.50 | 0.76 | 55.26 | 257.92/4.92 | 76.63/2.69 | 7.72/0.23 | 8.722/0.25 | 3.341/0.08 |
S12 | 50 | 1.50 | 0.76 | 55.26 | 355.92/3.44 | 99.77/2.31 | 7.05/0.20 | 11.654/0.67 | 5.049/0.17 |
S13 | water | 1.60 | 0.65 | 84.21 | / | / | / | / | / |
S14 | 10 | 1.60 | 0.65 | 84.21 | 81.11/4.28 | 27.75/1.83 | 8.02/0.22 | 1.806/0.04 | 1.011/0.04 |
S15 | 20 | 1.60 | 0.65 | 84.21 | 239.25/3.22 | 58.67/2.65 | 7.63/0.14 | 5.227/0.18 | 3.136/0.06 |
S16 | 30 | 1.60 | 0.65 | 84.21 | 281.69/3.43 | 67.96/1.33 | 7.36/0.07 | 7.868/0.26 | 3.827/0.07 |
S17 | 40 | 1.60 | 0.65 | 84.21 | 298.92/4.99 | 77.51/2.70 | 7.03/0.17 | 10.945/0.46 | 4.252/0.13 |
S18 | 50 | 1.60 | 0.65 | 84.21 | 360.97/3.15 | 104.27/1.79 | 7.01/0.11 | 14.940/0.56 | 5.149/0.19 |
Serial Number | Polymer Concentration (%) | Dry Density (g/cm3) | Void Ratio es | Relative Density Dr (%) | Cohesion (kPa)/Standard Deviations (kPa) | Angle of Internal Friction (degree)/Standard Deviations (kPa) |
---|---|---|---|---|---|---|
S19 | water | 1.40 | 0.89 | 21.05 | 0.03/0.00 | 25.66/0.35 |
S20 | 10 | 1.40 | 0.89 | 21.05 | 2.31/0.13 | 25.87/0.98 |
S21 | 20 | 1.40 | 0.89 | 21.05 | 12.12/0.35 | 28.44/0.31 |
S22 | 30 | 1.40 | 0.89 | 21.05 | 25.67/0.94 | 28.11/0.62 |
S23 | 40 | 1.40 | 0.89 | 21.05 | 80.09/0.50 | 28.04/0.41 |
S24 | 50 | 1.40 | 0.89 | 21.05 | 120.19/2.12 | 24.09/0.73 |
S25 | water | 1.50 | 0.76 | 55.26 | 0.17/0.00 | 26.16/0.30 |
S26 | 10 | 1.50 | 0.76 | 55.26 | 17.40/0.46 | 28.19/0.03 |
S27 | 20 | 1.50 | 0.76 | 55.26 | 34.16/0.78 | 32.17/0.89 |
S28 | 30 | 1.50 | 0.76 | 55.26 | 50.58/1.21 | 31.48/0.42 |
S29 | 40 | 1.50 | 0.76 | 55.26 | 82.59/2.66 | 23.91/0.02 |
S30 | 50 | 1.50 | 0.76 | 55.26 | 140.28/2.79 | 22.17/0.62 |
S31 | water | 1.60 | 0.65 | 84.21 | 3.39/0.04 | 29.27/0.26 |
S32 | 10 | 1.60 | 0.65 | 84.21 | 29.81/1.23 | 29.63/0.60 |
S33 | 20 | 1.60 | 0.65 | 84.21 | 45.19/1.11 | 32.56/0.67 |
S34 | 30 | 1.60 | 0.65 | 84.21 | 82.30/1.79 | 32.31/0.57 |
S35 | 40 | 1.60 | 0.65 | 84.21 | 152.78/2.34 | 25.89/0.99 |
S36 | 50 | 1.60 | 0.65 | 84.21 | 204.22/3.15 | 24.21/0.29 |
Serial Number | Polymer Concentration (%) | Dry Density (g/cm3) | Void Ratio es | Relative Density Dr (%) | Tensile Strength (kPa)/Standard Deviations (kPa) |
---|---|---|---|---|---|
S37 | water | 1.40 | 0.89 | 21.05 | 0.00/0.00 |
S38 | 10 | 1.40 | 0.89 | 21.05 | 6.08/0.13 |
S39 | 20 | 1.40 | 0.89 | 21.05 | 15.08/0.24 |
S40 | 30 | 1.40 | 0.89 | 21.05 | 25.74/0.58 |
S41 | 40 | 1.40 | 0.89 | 21.05 | 42.95/1.27 |
S42 | 50 | 1.40 | 0.89 | 21.05 | 67.11/1.89 |
S43 | water | 1.50 | 0.76 | 55.26 | 0.00/0.00 |
S44 | 10 | 1.50 | 0.76 | 55.26 | 6.16/0.14 |
S45 | 20 | 1.50 | 0.76 | 55.26 | 16.11/0.56 |
S46 | 30 | 1.50 | 0.76 | 55.26 | 33.33/0.66 |
S47 | 40 | 1.50 | 0.76 | 55.26 | 49.19/0.57 |
S48 | 50 | 1.50 | 0.76 | 55.26 | 72.19/1.45 |
S49 | water | 1.60 | 0.65 | 84.21 | 0.00/0.00 |
S50 | 10 | 1.60 | 0.65 | 84.21 | 6.42/0.12 |
S51 | 20 | 1.60 | 0.65 | 84.21 | 13.57/0.25 |
S52 | 30 | 1.60 | 0.65 | 84.21 | 22.92/0.45 |
S53 | 40 | 1.60 | 0.65 | 84.21 | 32.93/0.57 |
S54 | 50 | 1.60 | 0.65 | 84.21 | 47.56/1.29 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Bai, Y.; Song, Z.; Lu, Y.; Qian, W.; Kanungo, D.P. Evaluation of Strength Properties of Sand Modified with Organic Polymers. Polymers 2018, 10, 287. https://doi.org/10.3390/polym10030287
Liu J, Bai Y, Song Z, Lu Y, Qian W, Kanungo DP. Evaluation of Strength Properties of Sand Modified with Organic Polymers. Polymers. 2018; 10(3):287. https://doi.org/10.3390/polym10030287
Chicago/Turabian StyleLiu, Jin, Yuxia Bai, Zezhuo Song, Yi Lu, Wei Qian, and Debi Prasanna Kanungo. 2018. "Evaluation of Strength Properties of Sand Modified with Organic Polymers" Polymers 10, no. 3: 287. https://doi.org/10.3390/polym10030287
APA StyleLiu, J., Bai, Y., Song, Z., Lu, Y., Qian, W., & Kanungo, D. P. (2018). Evaluation of Strength Properties of Sand Modified with Organic Polymers. Polymers, 10(3), 287. https://doi.org/10.3390/polym10030287