Antifungal Paper Based on a Polyborneolacrylate Coating
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of PBA
2.3. PBA Coating on Paper
2.4. Characterization
2.5. Antifungal Colonization Test
2.6. Spore Germination Test
2.7. Physicochemical Properties Tests
2.8. Inking Performance Test
3. Results and Discussion
3.1. Morphology of PBA-Coated Paper
3.2. Characterization of PBA-Coated Paper
3.3. Antifungal Colonization Assay
3.4. Anti-Spore Germination Evaluation
3.5. Physicochemical Properties Assay
3.6. Inking Performance Assay
3.7. Mechanism Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sequeira, S.O.; Phillips, A.J.L.; Cabrita, E.J.; Macedo, M.F. Antifungal treatment of paper with calcium propionate and parabens: Short-term and long-term effects. Int. Biodeterior. Biodegrad. 2017, 120, 203–215. [Google Scholar] [CrossRef]
- Fabbri, A.A.; Ricelli, A.; Brasini, S.; Fanelli, C. Effect of different antifungals on the control of paper biodeterioration caused by fungi. Int. Biodeterior. Biodegrad. 2012, 39, 61–65. [Google Scholar] [CrossRef]
- Neves, E.R.; Schäfer, S.; Phillips, A.; Canejo, J.; Macedo, M.F. Antifungal effect of different methyl and propyl paraben mixtures on the treatment of paper biodeterioration. Int. Biodeterior. Biodegrad. 2009, 63, 267–272. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.T.; Li, G.F.; Stansbury, J.W.; Zhu, X.Q.; Wang, X.; Nie, J. Smart Antibacterial Surface Made by Photopolymerization. ACS Appl. Mater. Interfaces 2016, 8, 28047–28054. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, N.; Portugal, A.; Videira, S.; Rodríguez-Echeverría, S.; Bandeira, A.M.L.; Santos, M.J.A.; Freitas, H. Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int. Biodeterior. Biodegrad. 2009, 63, 626–629. [Google Scholar] [CrossRef]
- Sequeira, S.; Cabrita, E.J.; Macedo, M.F. Antifungals on paper conservation: An overview. Int. Biodeterior. Biodegrad. 2012, 74, 67–86. [Google Scholar] [CrossRef]
- Rakotonirainy, M.S.; Fohrer, F.; Flieder, F. Research on fungicides for aerial disinfection by thermal fogging in libraries and archives. Int. Biodeterior. Biodegrad. 1999, 44, 133–139. [Google Scholar] [CrossRef]
- Craig, R. Alternative approaches to the treatment of mould biodeterioration—An international problem. Pap. Conserv. 1986, 10, 27–30. [Google Scholar]
- Lim, J.K.; Melani, L.L.; Kim, H.J. Effects of Ag/ZnO Composite Fillers on the Antifungal Activity of Paper. J. Korea Technol. Assoc. Pulp Pap. Ind. 2017, 8, 134–142. [Google Scholar] [CrossRef]
- Afsharpour, M.; Imani, S.; Abdolmohammadi, S. Zno nanocomposites: Control of enviromental effects for preservation of old manuscripts. World Acad. Sci. Eng. Technol. 2011, 66, 208–215. [Google Scholar]
- Afsharpour, M.; Radb, F.T.; Malekian, H. New cellulosic titanium dioxide nanocomposite as a protective coating for preserving paper-art-works. J. Cult. Herit. 2011, 12, 380–383. [Google Scholar] [CrossRef]
- Paulus, W. Directory of Microbicides for the Protection of Materials; Springer: Dordrecht, The Netherlands, 2005; pp. 93–120. [Google Scholar]
- Sequeira, S.O.; Laia, C.A.T.; Phillips, A.J.L.; Cabrita, E.J.; Macedo, M.F. Clotrimazole and calcium hydroxide nanoparticles: A low toxicity antifungal alternative for paper conservation. J. Cult. Herit. 2017, 24, 45–52. [Google Scholar] [CrossRef]
- Giavini, E.; Menegola, E. Are azole fungicides a teratogenic risk for human conceptus? Toxicol. Lett. 2010, 198, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Rencüzoğullari, E.; Azirak, S.; Canimoglu, S.; Parlak, S.; Buyukleyla, M. The effects of thymol on sister chromatid exchange, chromosome aberration and micronucleus in human lymphocytes. Ecotoxicol. Environ. Saf. 2009, 72, 943–947. [Google Scholar]
- Stevanović, M.M.; Škapin, S.D.; Bračko, I.; Milenković, M.; Petković, J.; Filipič, M.; Uskokovića, D.P. Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer 2012, 53, 2818–2828. [Google Scholar] [CrossRef]
- Nittérus, M. Ethanol as Fungal Sanitizer in Paper Conservation. Restaurator 2000, 21, 101–115. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Baym, M.; Lieberman, T.D.; Kelsic, E.D.; Chait, R.; Gross, R.; Yelin, I.; Kishony, R. Spatiotemporal microbial evolution on antibiotic landscapes. Science 2016, 353, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gan, H.; Sun, T.L.; Su, B.L.; Fuchs, H.; Vestweber, D.; Butz, S. Stereochemistry triggered differential cell behaviours on chiral polymer surfaces. Soft Matter 2010, 6, 3851–3855. [Google Scholar] [CrossRef]
- Wang, X.; Gan, H.; Zhang, M.X.; Sun, T.L. Modulating Cell Behaviors on Chiral Polymer Brush Films with Different Hydrophobic Side Groups. Langmuir 2012, 28, 2791–2798. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.Q.; Li, G.; Luan, D.; Yuan, Q.; Wei, Y.; Wang, X. Antibacterial Adhesion of Borneol-Based Polymer via Surface Chiral Stereochemistry. ACS Appl. Mater. Interfaces 2014, 6, 19371–19377. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Qian, Z.; Luo, L.; Yuan, Q.; Guo, X.; Tao, L.; Wei, Y.; Wang, X. Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate. ACS Appl. Mater. Interfaces 2016, 8, 28522–28528. [Google Scholar] [CrossRef] [PubMed]
- Jaisai, M.; Baruah, S.; Dutta, J. Paper modified with ZnO nanorods—Antimicrobial Studies. Beilstein J. Nanotechnol. 2012, 3, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Luan, D.; Wang, S.; Zhao, L.; Tao, L.; Yuan, Q.; Wang, X. Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition. RSC Adv. 2015, 5, 51947–51952. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Freire, C.R.S.; Pinto, R.J.B.; Fernandes, S.C.M.; Neto, C.P.; Silvestre, A.J.D.; Causio, J.; Baldi, G.; Sadocco, P.; Trindade, T. Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 2012, 19, 1425–1436. [Google Scholar] [CrossRef]
- Amini, E.; Azadfallah, M.; Layeghi, M.; Talaei-Hassanloui, R. Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 2016, 23, 557–570. [Google Scholar] [CrossRef]
- Zhang, D.; Xiao, H. Dual-Functional Beeswaxes on Enhancing Antimicrobial Activity and Water Vapor Barrier Property of Paper. ACS Appl. Mater. Interfaces 2013, 5, 3464–3468. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Roy, A.; Nandi, I.; Banerjee, P.; Banerjee, S.; Ghosh, M.; Chakrabarti, S. Paper coated with sonochemically synthesized zinc oxide nanoparticles: Enhancement of properties for preservation of documents. Tappi J. 2017, 16, 25–33. [Google Scholar]
- Li, G.F.; Zhao, H.J.; Hong, J.; Quan, K.C.; Yuan, Q.P.; Wang, X. Antifungal graphene oxide-borneol composite. Colloids Surf. B Biointerfaces 2017, 160, 220–227. [Google Scholar] [CrossRef] [PubMed]
Concentration of PBA (%) | Brightness (%) | Water CA | pH | Tensile Strength (kN/m) |
---|---|---|---|---|
0 | 88.47 ± 0.07 | 59.4 ± 1.0° | 7.23 ± 0.03 | 4.4 ± 0.2 |
5 | 86.49 ± 0.06 | 79.1 ± 2.0° | 7.18 ± 0.02 | 3.8 ± 0.1 |
10 | 85.70 ± 0.10 | 80.3 ± 1.3° | 7.12 ± 0.01 | 4.0 ± 0.1 |
15 | 82.85 ± 0.12 | 82.0 ± 1.6° | 7.09 ± 0.02 | 4.3 ± 0.2 |
Concentration of PBA (%) | L* | a* | b* | ΔL* | Δa* | Δb* | ΔE* |
---|---|---|---|---|---|---|---|
0 | 15.41 | 0.73 | 0.46 | ||||
5 | 14.90 | 0.78 | 0.50 | −0.51 | 0.05 | 0.04 | 0.51 |
10 | 13.75 | 0.81 | 0.68 | −1.66 | 0.08 | 0.22 | 1.68 |
15 | 12.25 | 0.79 | 0.48 | −3.16 | 0.06 | 0.02 | 3.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Bai, Y.; Wan, M.; Liu, Y.; Tao, L.; Wang, X. Antifungal Paper Based on a Polyborneolacrylate Coating. Polymers 2018, 10, 448. https://doi.org/10.3390/polym10040448
Xu J, Bai Y, Wan M, Liu Y, Tao L, Wang X. Antifungal Paper Based on a Polyborneolacrylate Coating. Polymers. 2018; 10(4):448. https://doi.org/10.3390/polym10040448
Chicago/Turabian StyleXu, Jiangqi, Yujia Bai, Meijiao Wan, Yanhui Liu, Lei Tao, and Xing Wang. 2018. "Antifungal Paper Based on a Polyborneolacrylate Coating" Polymers 10, no. 4: 448. https://doi.org/10.3390/polym10040448
APA StyleXu, J., Bai, Y., Wan, M., Liu, Y., Tao, L., & Wang, X. (2018). Antifungal Paper Based on a Polyborneolacrylate Coating. Polymers, 10(4), 448. https://doi.org/10.3390/polym10040448