Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Optical Properties of the Fluorophores
2.2. Computational Studies
2.3. Fabrication of a Red OLED
3. Materials and Methods
3.1. Synthesis of C1 and C2
3.2. Computational Studies
3.3. OLED Fabrication
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Lee, K.H.; Oh, S.H.; Park, M.H.; Kim, Y.K.; Yoon, S.S. An Efficient Red Organic Light-Emitting Diode Using DCJTB Type Emitters Based on Silicone-Containing Julolidine Derivatives. Mol. Cryst. Liq. Cryst. 2011, 550, 270–277. [Google Scholar] [CrossRef]
- Riedel, D.; Wehlus, T.; Reusch, T.C.G.; Brabec, C.J. Polymer-based scattering layers for internal light extraction from organic light emitting diodes. Org. Electron. 2016, 32, 27–33. [Google Scholar] [CrossRef]
- Wilson, R.J.; Humphries, M.J.; Archer, R.A.; Mohamad, D.; Foxon, S.; Garcia, E.H.; King, S.; Kugler, T.; Baker, C.; Conway, N.; et al. P-128: Solution Processable Polymer OLED Lighting Panels with 25 lm/W Efficiency. SID Symp. Dig. Tech. Pap. 2012, 43, 1535–1537. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Zhu, X.; Chen, B.; Wang, Z.; Xiao, B.; Lam, J.W.Y.; Zhao, Z.; Ma, D.; Tang, B.Z. Creation of Efficient Blue Aggregation-Induced Emission Luminogens for High-Performance Nondoped Blue OLEDs and Hybrid White OLEDs. ACS Appl. Mater. Inter. 2019, 11, 17592–17601. [Google Scholar] [CrossRef]
- Cao, C.; Chen, W.-C.; Tian, S.; Chen, J.-X.; Wang, Z.-Y.; Zheng, X.-H.; Ding, C.-W.; Li, J.-H.; Zhu, J.-J.; Zhu, Z.-L.; et al. A novel D–π–A blue fluorophore based on [1,2,4] triazolo [1,5-a]pyridine as an electron acceptor and its application in organic light-emitting diodes. Mater. Chem. Front. 2019, 3, 1071–1079. [Google Scholar] [CrossRef]
- Ibrahim-Ouali, M.; Dumur, F. Recent Advances on Metal-Based Near-Infrared and Infrared Emitting OLEDs. Molecules 2019, 24, 1412. [Google Scholar] [CrossRef]
- Zhang, S.; Turnbull, G.A.; Samuel, I.D.W. Highly directional emission from a broadband organic light-emitting diode using a substrate diffractive optical element for visible light communications. Nonlinear Opt. Quantum Opt. 2015, 47, 273–282. [Google Scholar]
- Qiu, J.; Hameau, A.; Shi, X.; Mignani, S.; Majoral, J.-P.; Caminade, A.-M. Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. ChemPlusChem 2019, 84, 1070–1080. [Google Scholar] [CrossRef]
- Huo, S.; Carroll, J.; Vezzu, D.A.K. Design, Synthesis, and Applications of Highly Phosphorescent Cyclometalated Platinum Complexes. Asian J. Org. Chem. 2015, 4, 1210–1245. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, J.-G.; Fung, M.-K.; Meng, H. Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes. Org. Electron. 2018, 63, 369–375. [Google Scholar] [CrossRef]
- Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M.K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A.; et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 2016, 16, 356–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albacete, P.; Lopez-Moreno, A.; Mena-Hernando, S.; Platero-Prats, A.E.; Perez, E.M.; Zamora, F. Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chem. Commun. (Camb) 2019, 55, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. Highly Emissive Covalent Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800. [Google Scholar] [CrossRef]
- Guo, H.; Dang, C.; Zhao, J.; Dick, B. Lighting the Flavin Decorated Ruthenium(II) Polyimine Complexes: A Theoretical Investigation. Inorg. Chem. 2019, 58, 8486–8493. [Google Scholar] [CrossRef]
- Holder, E.; Langeveld, B.M.W.; Schubert, U.S. New Trends in the Use of Transition Metal-Ligand Complexes for Applications in Electroluminescent Devices. Adv. Mater. 2005, 17, 1109–1121. [Google Scholar] [CrossRef]
- Kin, Z.; Hino, Y.; Kajii, H.; Hasegawa, Y.; Kawai, T.; Ohmori, Y. Photoluminescence and Electroluminescence in Combination of Rare-Earth Metal Complexes and Phosphorescent Molecules. MRS Proc. 2006, 965, 0965-S04-02. [Google Scholar] [CrossRef]
- Lo, K.K.-W.; Li, S.P.-Y. Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Adv. 2014, 4, 10560. [Google Scholar] [CrossRef]
- Lorbach, A.; Bolte, M.; Li, H.; Lerner, H.W.; Holthausen, M.C.; Jakle, F.; Wagner, M. 9,10-Dihydro-9,10-diboraanthracene: Supramolecular structure and use as a building block for luminescent conjugated polymers. Angew. Chem. 2009, 48, 4584–4588. [Google Scholar] [CrossRef]
- Paramonov, D.V.; Kostryukova, T.S.; Bychenkova, T.A.; Pomelova, V.G.; Osin, N.S. Biospecific nanoparticles for multiplex phosphorescence analysis (PHOSPHAN). Russ. J. Bioorganic Chem. 2017, 42, 655–663. [Google Scholar] [CrossRef]
- Thomas, T.H.; Harkin, D.J.; Gillett, A.J.; Lemaur, V.; Nikolka, M.; Sadhanala, A.; Richter, J.M.; Armitage, J.; Chen, H.; McCulloch, I.; et al. Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 2019, 10, 2614. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zeng, S.; Liu, M.; Chen, J.; Huang, H.; Deng, F.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of PEGylated and biodegradable fluorescent organic nanoparticles with aggregation-induced emission characteristics through direct ring-opening polymerization. J. Taiwan Inst. Chem. Eng. 2019, 95, 234–240. [Google Scholar] [CrossRef]
- Panunzi, B.; Diana, R.; Concilio, S.; Sessa, L.; Tuzi, A.; Piotto, S.; Caruso, U. Fluorescence pH-dependent sensing of Zn(II) by a tripodal ligand. A comparative X-ray and DFT study. J. Lumin. 2019, 212, 200–206. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Tuzi, A.; Caruso, U. Two tridentate pyridinyl-hydrazone zinc(II) complexes as fluorophores for blue emitting layers. J. Mol. Struct. 2019, 1197, 672–680. [Google Scholar] [CrossRef]
- Panunzi, B.; Concilio, S.; Diana, R.; Shikler, R.; Nabha, S.; Piotto, S.; Sessa, L.; Tuzi, A.; Caruso, U. Photophysical Properties of Luminescent Zinc(II)‒Pyridinyloxadiazole Complexes and their Glassy Self-Assembly Networks. Eur. J. Inorg. Chem. 2018, 2018, 2709–2716. [Google Scholar] [CrossRef]
- Panunzi, B.; Borbone, F.; Capobianco, A.; Concilio, S.; Diana, R.; Peluso, A.; Piotto, S.; Tuzi, A.; Velardo, A.; Caruso, U. Synthesis, spectroscopic properties and DFT calculations of a novel multipolar azo dye and its zinc(II) complex. Inorg. Chem. Commun. 2017, 84, 103–108. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Concilio, S.; Piotto, S.; Tuzi, A.; Panunzi, B. A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dye. Pigment. 2018, 155, 249–257. [Google Scholar] [CrossRef]
- Farley, S.J.; Rochester, D.L.; Thompson, A.L.; Howard, J.A.; Williams, J.A. Controlling emission energy, self-quenching, and excimer formation in highly luminescent N—C—N-coordinated platinum(II) complexes. Inorg. Chem. 2005, 44, 9690–9703. [Google Scholar] [CrossRef]
- Borbone, F.; Caruso, U.; Concilio, S.; Nabha, S.; Piotto, S.; Shikler, R.; Tuzi, A.; Panunzi, B. From cadmium(II)-aroylhydrazone complexes to metallopolymers with enhanced photoluminescence. A structural and DFT study. Inorg. Chim. Acta 2017, 458, 129–137. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, X.; Feng, Z.; Liu, B.; Zhong, D.; Zhang, J.; Zhou, G.; Wu, Z. Highly Efficient Deep-Red Organic Light-Emitting Devices Based on Asymmetric Iridium(III) Complexes with the Thianthrene 5,5,10,10-Tetraoxide Moiety. ACS Appl. Mater. Inter. 2019, 11, 26152–26164. [Google Scholar] [CrossRef]
- Du, C.; Ye, S.; Liu, Y.; Guo, Y.; Wu, T.; Liu, H.; Zheng, J.; Cheng, C.; Zhu, M.; Yu, G. Fused-seven-ring anthracene derivative with two sulfur bridges for high performance red organic light-emitting diodes. Chem. Commun. 2010, 46, 8573–8575. [Google Scholar] [CrossRef] [PubMed]
- Diana, R.; Panunzi, B.; Shikler, R.; Nabha, S.; Caruso, U. Highly efficient dicyano-phenylenevinylene fluorophore as polymer dopant or zinc-driven self-assembling building block. Inorg. Chem. Commun. 2019, 104, 145–149. [Google Scholar] [CrossRef]
- Caruso, U.; Panunzi, B.; Diana, R.; Concilio, S.; Sessa, L.; Shikler, R.; Nabha, S.; Tuzi, A.; Piotto, S. AIE/ACQ effects in two DR/NIR emitters: A structural and DFT comparative analysis. Molecules 2018, 23, 1947. [Google Scholar] [CrossRef] [PubMed]
- Grybauskaite-Kaminskiene, G.; Volyniuk, D.; Mimaite, V.; Bezvikonnyi, O.; Bucinskas, A.; Bagdziunas, G.; Grazulevicius, J.V. Aggregation-Enhanced Emission and Thermally Activated Delayed Fluorescence of Derivatives of 9-Phenyl-9H-Carbazole: Effects of Methoxy and tert-Butyl Substituents. Chem. A Eur. J. 2018, 24, 9581–9591. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Abadia, M.; Varghese, S.; Milian-Medina, B.; Gierschner, J.; Gimenez, R.; Ros, M.B. Bent-core liquid crystalline cyanostilbenes: Fluorescence switching and thermochromism. Phys. Chem. Chem. Phys. PCCP 2015, 17, 11715–11724. [Google Scholar] [CrossRef] [PubMed]
- Panunzi, B.; Diana, R.; Concilio, S.; Sessa, L.; Shikler, R.; Nabha, S.; Tuzi, A.; Caruso, U.; Piotto, S. Solid-state highly efficient dr mono and poly-dicyano-phenylenevinylene fluorophores. Molecules 2018, 23, 1505. [Google Scholar] [CrossRef]
- Borbone, F.; Caruso, U.; Palma, S.D.; Fusco, S.; Nabha, S.; Panunzi, B.; Shikler, R. High solid state photoluminescence quantum yields and effective color tuning in polyvinylpyridine based zinc(II) metallopolymers. Macromol. Chem. Phys. 2015, 216, 1516–1522. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, W.; Hao, X.; Redshaw, C.; Chen, L.; Sun, W.-H. 6-Benzhydryl-4-methyl-2-(1H-benzoimidazol-2-yl)phenol ligands and their zinc complexes: Syntheses, characterization and photoluminescence behavior. Inorg. Chim. Acta 2012, 392, 345–353. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Shikler, R.; Nabha, S.; Caruso, U. A symmetrical azo-based fluorophore and the derived salen multipurpose framework for emissive layers. Inorg. Chem. Commun. 2019, 104, 186–189. [Google Scholar] [CrossRef]
- Vincett, P.; Voigt, E.; Rieckhoff, K. Phosphorescence and fluorescence of phthalocyanines. J. Chem. Phys. 1971, 55, 4131–4140. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, G.; Yao, C.; Wang, Z.; Chen, Z.; Zhang, Q.; Xing, J.; Gong, Q.; Chen, L.-C.; Zhang, H.-L. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat. Commun. 2019, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Klessinger, M.; Michl, J. (Eds.) Excited States and Photochemistry of Organic Molecules; Wiley-VCH Verlag: Weinheim, Germany, 1995; p. 544. [Google Scholar]
- Chen, J.; Ma, D. Effect of dye-doped concentration on the charge carrier recombination in molecularly doped organic light-emitting devices. J. Phys. D Appl. Phys. 2006, 39, 2044–2047. [Google Scholar] [CrossRef]
- Lin, H.-C.; Tsai, C.-M.; Lin, J.-T.S.; Thomas, K.R.J. Novel red and white PLED devices consisting of PVK blended with blue-emitting fluorene derivatives and carbazole dopants. Synth. Met. 2006, 156, 1155–1160. [Google Scholar] [CrossRef]
- Kim, M.; Whang, D.R.; Gierschner, J.; Park, S.Y. A distyrylbenzene based highly efficient deep red/near-infrared emitting organic solid. J. Mater. Chem. C 2015, 3, 231–234. [Google Scholar] [CrossRef]
- Wen, W.; Shi, Z.-F.; Cao, X.-P.; Xu, N.-S. Triphenylethylene-based fluorophores: Facile preparation and full-color emission in both solution and solid states. Dye. Pigment. 2016, 132, 282–290. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhuang, Z.; Wang, Z.; Lin, G.; Shen, P.; Chen, S.; Zhao, Z.; Tang, B.Z. Efficient red AIEgens based on tetraphenylethene: Synthesis, structure, photoluminescence and electroluminescence. J. Mater. Chem. C 2018, 6, 5900–5907. [Google Scholar] [CrossRef]
- Sakai, K.-I.; Ichikawa, M.; Taniguchi, Y. Photoluminescent mechanism of a proton-transfer laser dye in highly doped polymer films. Chem. Phys. Lett. 2006, 420, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Izquierdo, M.A.; Oh, S.; Park, S.Y.; Milián-Medina, B.; Roca-Sanjuán, D.; Gierschner, J. Inverted energy gap law for the nonradiative decay in fluorescent floppy molecules: Larger fluorescence quantum yields for smaller energy gaps. Org. Chem. Front. 2019, 6, 1948–1954. [Google Scholar] [CrossRef]
- Rodriguez-Mas, F.; Ferrer, J.C.; Alonso, J.L.; Fernandez de Avila, S. Expanded Electroluminescence in High Load CdS Nanocrystals PVK-Based LEDs. Nanomaterials 2019, 9, 1212. [Google Scholar] [CrossRef]
- Roviello, A.; Borbone, F.; Carella, A.; Diana, R.; Roviello, G.; Panunzi, B.; Ambrosio, A.; Maddalena, P. High quantum yield photoluminescence of new polyamides containing oligo-PPV amino derivatives and related oligomers. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2677–2689. [Google Scholar] [CrossRef]
- Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013, 113, 2110–2142. [Google Scholar] [CrossRef]
- Fetter, A.L.; Walecka, J.D. Quantum Theory of Many-Particle Systems; McGraw Hill: San Francisco, CA, USA, 2012. [Google Scholar]
- Marten, B.; Kim, K.; Cortis, C.; Friesner, R.A.; Murphy, R.B.; Ringnalda, M.N.; Sitkoff, D.; Honig, B. New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects. J. Phys. Chem. 1996, 100, 11775–11788. [Google Scholar] [CrossRef]
Compound | λabs (nm) a | λem (nm) b | PLQY% c | λabs (nm) d | λem (nm) e | PLQY% f |
---|---|---|---|---|---|---|
C1 | (364) 470 | 628 (703) | 5.2 ± 0.5 | 382 (522) | 651 | 4.8 ± 0.2 |
C2 | 398 (450) | 563 | 4.0 ± 0.5 | (412) 499 | 638 | 3.5 ± 0.2 |
Compound | λabs (nm) a | λem (nm) b | PLQY% c | λabs (nm) d | λem (nm) e | PLQY% f | |
---|---|---|---|---|---|---|---|
C1 | 20% | 510 | 620 | 20 ± 1 | 478 | 616 | 78 ± 2 |
10% | 512 | 621 | 21 ± 1 | 477 | 615 | 89 ± 2 | |
C2 | 20% | 480 | 566 | 14 ± 1 | 462 | 570 | 19 ± 2 |
10% | 476 | 565 | 15 ± 1 | 459 | 569 | 25 ± 1 |
Properties | C1 | C2 |
---|---|---|
Oxidation potential (eV) | 0.47 | 1.02 |
Reduction potential (eV) | −1.18 | −1.02 |
Hole reorganization energy (eV) | 0.24 | 0.26 |
Electron reorganization energy (eV) | 0.39 | 0.13 |
Triplet energy (eV) | 1.25 | 1.35 |
λAbsmax (nm) | 568 | 546 |
λEmax (nm) | 661 | 636 |
Scaled HOMO (eV) | −5.01 | −5.57 |
Scaled LUMO (eV) | −3.35 | −3.52 |
HOMO–LUMO (eV) | 1.66 | 2.05 |
Triplet stabilization energy (eV) | 0.43 | 0.33 |
Hole extraction potential (eV) | 5.75 | 6.70 |
Triplet reorganization energy (eV) | −2.17 | −2.73 |
Electron extraction potential (eV) | 0.69 | 0.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diana, R.; Panunzi, B.; Marrafino, F.; Piotto, S.; Caruso, U. Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs. Polymers 2019, 11, 1751. https://doi.org/10.3390/polym11111751
Diana R, Panunzi B, Marrafino F, Piotto S, Caruso U. Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs. Polymers. 2019; 11(11):1751. https://doi.org/10.3390/polym11111751
Chicago/Turabian StyleDiana, Rosita, Barbara Panunzi, Francesco Marrafino, Stefano Piotto, and Ugo Caruso. 2019. "Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs" Polymers 11, no. 11: 1751. https://doi.org/10.3390/polym11111751
APA StyleDiana, R., Panunzi, B., Marrafino, F., Piotto, S., & Caruso, U. (2019). Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs. Polymers, 11(11), 1751. https://doi.org/10.3390/polym11111751