Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Preparation of Polymer Brushes
2.3. Test and Characterization
3. Results and Discussion
3.1. Surface Composition and Morphology Analysis of PolySVBA Brushes
3.2. Analysis of Surface Wetting Behavior
3.3. Analysis of Friction Coefficient and Wear Resistance
3.4. Wear Mechanism
4. Conclusions
- The wettability of substrate surface can be significantly improved by grafting PSVBA brushes, gradually changing from the Cassie–Baxter state to the Wenzel state by grafting polymer brushes, such that the texture causes no effect on the grafted surface wettability.
- For the grafted smooth surface, polymer brushes easily form a hydrated layer and exhibit ultra-low friction behavior. However, the alternating shearing action can easily break the polymer chains and, thus, destroy the lubrication film, and the short wear resistance life of polymer brushes cannot be avoided.
- Although the friction coefficient of the grafted textured surface slightly increased, the friction test on the surface could be stably operated for 35,000 cycles without significant fluctuations, as the micro-pits on the textured surface can protect polymer brushes from wear. The effect of the micro-texture can immensely prolong the service life of polymer brushes and expand their tribological applications.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bielecki, R.M.; Doll, P.; Spencer, N.D. Ultrathin, Oil-Compatible, Lubricious Polymer Coatings: A Comparison of Grafting-To and Grafting-From Strategies. Tribol. Lett. 2013, 49, 273–280. [Google Scholar] [CrossRef]
- Kang, T.; Banquy, X.; Heo, J.H.; Lim, C.N.; Lynd, N.A.; Lundberg, P.; Oh, D.X.; Lee, H.K.; Hong, Y.K.; Hwang, D.S.; et al. Mussel-Inspired Anchoring of Polymer Loops That Provide Superior Surface Lubrication and Antifouling Properties. ACS Nano 2015, 10, 930–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Ma, S.; Wei, Q.; Ye, Q.; Yu, B.; Van Der Gucht, J.; Zhou, F. The Weak Interaction of Surfactants with Polymer Brushes and Its Impact on Lubricating Behavior. Macromolecules 2015, 48, 6186–6196. [Google Scholar] [CrossRef]
- Wei, Q.; Cai, M.; Zhou, F.; Liu, W. Dramatically Tuning Friction Using Responsive Polyelectrolyte Brushes. Macromolecules 2013, 46, 9368–9379. [Google Scholar] [CrossRef]
- Kobayashi, M.; Takahara, A. Tribological properties of hydrophilic polymer brushes under wet conditions. Chem. Rec. 2010, 10, 208–216. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kaido, M.; Suzuki, A.; Takahara, A. Tribological properties of cross-linked oleophilic polymer brushes on diamond-like carbon films. Polymer 2016, 89, 128–134. [Google Scholar] [CrossRef]
- Xiao, S.; Ren, B.; Huang, L.; Shen, M.; Zhang, Y.; Zhong, M.; Yang, J.; Zheng, J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr. Opin. Chem. Eng. 2018, 19, 86–93. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Q.B.; Cai, M.R.; Zhou, F. Interfacial Friction Control. Adv. Mater. Interfaces 2015, 2, 1400392. [Google Scholar] [CrossRef]
- Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J.F.; Jerome, R.; Klein, J. Lubrication by charged polymers. Nature 2003, 425, 163–165. [Google Scholar] [CrossRef]
- Chen, M.; Briscoe, W.H.; Armes, S.P.; Klein, J.; Armes, S. Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science 2009, 323, 1698–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Jackson, N.E.; Xu, X.; Morgenstern, Y.; Kaufman, Y.; Ruths, M.; De Pablo, J.J.; Tirrell, M. Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Science 2018, 360, 1434–1438. [Google Scholar] [CrossRef] [Green Version]
- Stokes, K.; Watson, S.; Nie, M.; Wang, L. Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications. RSC Adv. 2015, 5, 89698–89730. [Google Scholar] [Green Version]
- Xiao, S.; Zhang, J.; Shen, M.; Sun, L.; Chen, F.; Fan, P.; Zhong, M.; Yang, J. Aqueous lubrication of poly(N-hydroxyethyl acrylamide) brushes: A strategy for their enhanced load bearing capacity and wear resistance. RSC Adv. 2016, 6, 21961–21968. [Google Scholar]
- Gachot, C.; Rosenkranz, A.; Hsu, S.; Costa, H.; Costa, H. A critical assessment of surface texturing for friction and wear improvement. Wear 2017, 372–373, 21–41. [Google Scholar] [CrossRef]
- Ghani, J.A.; Rahman, H.A.; Mahmood, W.M.F.W. A brief review on friction reduction via dimple structure for piston engine. World Rev. Sci. Technol. Sustain. Dev. 2018, 14, 147–164. [Google Scholar] [CrossRef]
- Gropper, D.; Wang, L.; Harvey, T.J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Tribol. Int. 2016, 94, 509–529. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Mufti, R.A.; Mosarof, M.H.; Khuong, L.S.; Quazi, M.M. Surface Texture Manufacturing Techniques and Tribological Effect of Surface Texturing on Cutting Tool Performance: A Review. Crit. Rev. Solid State Sci. 2016, 41, 447–481. [Google Scholar] [CrossRef]
- Hua, X.; Sun, J.; Zhang, P.; Liu, K.; Wang, R.; Ji, J.; Fu, Y. Tribological Properties of Laser Microtextured Surface Bonded with Composite Solid Lubricant at High Temperature. J. Tribol. 2016, 138, 031302. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Jeong, S.-H.; Kim, T.-H.; Choi, J.-H.; Cho, S.-H.; Kim, B.S.; Lee, S.W. Effects of solid lubricant and laser surface texturing on tribological behaviors of atmospheric plasma sprayed Al2O3-ZrO2 composite coatings. Ceram. Int. 2017, 43, 9200–9206. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Kim, S.-H.; Kim, T.-H.; Cho, S.-H.; Gyawali, G.; Lee, S.W. Effects of solid lubricant and laser surface texturing on frictional performance of pulse electric current sintered Al2O3–ZrO2 composites. Ceram. Int. 2016, 42, 7830–7836. [Google Scholar] [CrossRef]
- Ripoll, M.R.; Simič, R.; Brenner, J.; Podgornik, B. Friction and Lifetime of Laser Surface–Textured and MoS2-Coated Ti6Al4V Under Dry Reciprocating Sliding. Tribol. Lett. 2013, 51, 261–271. [Google Scholar] [CrossRef]
- Hu, T.; Hu, L.; Ding, Q. Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film. Surf. Coat. Technol. 2012, 206, 5060–5066. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Laser surface texturing for adaptive solid lubrication. Wear 2006, 261, 1285–1292. [Google Scholar] [CrossRef]
- Sonnenschein, L.; Seubert, A. Synthesis of a series of monomeric styrene sulfobetaine precursors. Tetrahedron Lett. 2011, 52, 1101–1104. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, J.; Zang, X.; Shen, J.; Lin, S. Platelet adhesive resistance of segmented polyurethane film surface-grafted with vinyl benzyl sulfo monomer of ammonium zwitterions. Biomaterials 2003, 24, 4223–4231. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Q.; Li, L.; Lin, S.; Shen, J. Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. J. Mater. Chem. B 2014, 2, 7222–7231. [Google Scholar] [CrossRef]
- Wei, Q.B.; Pei, X.W.; Hao, J.Y.; Cai, M.R.; Zhou, F.; Liu, W.M. Surface Modification of Diamond-Like Carbon Film with Polymer Brushes Using a Bio-Inspired Catechol Anchor for Excellent Biological Lubrication. Adv. Mater. Interfaces 2014, 1, 1–8. [Google Scholar] [CrossRef]
- Sun, N.; Liu, M.; Wang, J.; Wang, Z.; Li, X.; Jiang, B.; Pei, R. Chitosan Nanofibers for Specific Capture and Nondestructive Release of CTCs Assisted by pCBMA Brushes. Small 2016, 12, 5090–5097. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zheng, L.; Li, C.; Jiang, Z. Smart zwitterionic membranes with on/off behavior for protein transport. J. Phys. Chem. 2008, 112, 11923–11928. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, H.; Xiao, S.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Zheng, J. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir 2015, 31, 9125–9133. [Google Scholar] [CrossRef]
- Han, M.; Espinosa-Marzal, R.M. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation. J. Phys. Chem. Lett. 2017, 8, 3954–3960. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, L.; Huang, L.; Xiao, S.; Chen, F.; Fan, P.; Zhong, M.; Yang, J. Salt- and thermo-responsive polyzwitterionic brush prepared via surface-initiated photoiniferter-mediated polymerization. Appl. Surf. Sci. 2018, 450, 130–137. [Google Scholar] [CrossRef]
- Ma, C.; Bai, S.; Peng, X.; Meng, Y. Improving hydrophobicity of laser textured SiC surface with micro-square convexes. Appl. Surf. Sci. 2013, 266, 51–56. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxer, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Feng, X.J.; Jiang, L. Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater. 2006, 18, 3063–3078. [Google Scholar] [CrossRef]
- Murakami, D.; Jinnai, H.; Takahara, A. Wetting Transition from the Cassie–Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir 2014, 30, 2061–2067. [Google Scholar] [CrossRef]
- Etsion, I. Improving Tribological Performance of Mechanical Components by Laser Surface Texturing. Tribol. Lett. 2004, 17, 733–737. [Google Scholar] [CrossRef]
- Goujon, F.; Ghoufi, A.; Malfreyt, P.; Tildesley, D.J. The kinetic friction coefficient of neutral and charged polymer brushes. Soft Matter 2013, 9, 2966. [Google Scholar] [CrossRef]
- Ramakrishna, S.N.; Nalam, P.C.; Espinosa-Marzal, R.M.; Naik, V.V.; Spencer, N.D. Adhesion and Friction Properties of Polymer Brushes on Rough Surfaces: A Gradient Approach. Langmuir 2013, 29, 15251–15259. [Google Scholar] [CrossRef]
Type | Contact Angle (°) | |||
---|---|---|---|---|
Original | 88.5 | 88.3 | 100.1 | 109.1 |
Initiator modified | 76.4 | 74.4 | 90.41 | 100.0 |
48-h polySVBA grafted | 37.9 | 25.8 | 64.0 | 39.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.-x.; Zhang, Z.-x.; Yang, J.-t.; Xiong, G.-y. Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface. Polymers 2019, 11, 981. https://doi.org/10.3390/polym11060981
Shen M-x, Zhang Z-x, Yang J-t, Xiong G-y. Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface. Polymers. 2019; 11(6):981. https://doi.org/10.3390/polym11060981
Chicago/Turabian StyleShen, Ming-xue, Zhao-xiang Zhang, Jin-tao Yang, and Guang-yao Xiong. 2019. "Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface" Polymers 11, no. 6: 981. https://doi.org/10.3390/polym11060981
APA StyleShen, M. -x., Zhang, Z. -x., Yang, J. -t., & Xiong, G. -y. (2019). Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface. Polymers, 11(6), 981. https://doi.org/10.3390/polym11060981