Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Photoactive Ink Formulation
2.3. Fabrication of PSCs
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Sai-Anand, G.; Gopalan, A.-I.; Lee, K.-P.; Venkatesan, S.; Qiao, Q.; Kang, B.-H.; Lee, S.-W.; Lee, J.-S.; Kang, S.-W. Electrostatic nanoassembly of contact interfacial layer for enhanced photovoltaic performance in polymer solar cells. Sol. Energy Mater. Sol. Cells 2016, 153, 148–163. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, X.; Hu, W.; Zhang, M.; Ding, L.; Wang, M.; Qiao, Q.; Yang, S. Beyond metal oxides: Introducing low-temperature solution-processed ultrathin layered double hydroxide nanosheets into polymer solar cells toward improved electron transport (solar rrl 2∕2019). Sol. RRL 2019, 3, 1970025. [Google Scholar] [CrossRef]
- Siddiki, M.K.; Venkatesan, S.; Qiao, Q. Nb2o5 as a new electron transport layer for double junction polymer solar cells. Phys. Chem. Chem. Phys. 2012, 14, 4682–4686. [Google Scholar] [CrossRef] [PubMed]
- Suliman, R.; Mitul, A.F.; Mohammad, L.; Djira, G.; Pan, Y.; Qiao, Q. Modeling of organic solar cell using response surface methodology. Results Phys. 2017, 7, 2232–2241. [Google Scholar] [CrossRef]
- Mitul, A.F.; Mohammad, L.; Venkatesan, S.; Adhikari, N.; Sigdel, S.; Wang, Q.; Dubey, A.; Khatiwada, D.; Qiao, Q. Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy 2015, 11, 56–63. [Google Scholar] [CrossRef]
- Venkatesan, S.; Adhikari, N.; Chen, J.; Ngo, E.C.; Dubey, A.; Galipeau, D.W.; Qiao, Q. Interplay of nanoscale domain purity and size on charge transport and recombination dynamics in polymer solar cells. Nanoscale 2014, 6, 1011–1019. [Google Scholar] [CrossRef]
- Xu, B.; Gopalan, S.-A.; Gopalan, A.-I.; Muthuchamy, N.; Lee, K.-P.; Lee, J.-S.; Jiang, Y.; Lee, S.-W.; Kim, S.-W.; Kim, J.-S.; et al. Functional solid additive modified pedot:Pss as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells. Sci. Rep. 2017, 7, 45079. [Google Scholar] [CrossRef]
- Kim, J.Y. Effect of solvents on the electrical and morphological characteristics of polymer solar cells. Polymers 2019, 11, 228. [Google Scholar] [CrossRef]
- Lu, S.; Sun, Y.; Ren, K.; Liu, K.; Wang, Z.; Qu, S. Recent development in ito-free flexible polymer solar cells. Polymers 2018, 10, 5. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, X.; Liang, Y.; Guo, X. Interfacial layer engineering for performance enhancement in polymer solar cells. Polymers 2015, 7, 333–372. [Google Scholar] [CrossRef]
- Roy, J.K.; Kar, S.; Leszczynski, J. Optoelectronic properties of c60 and c70 fullerene derivatives: Designing and evaluating novel candidates for efficient p3ht polymer solar cells. Materials 2019, 12, 2282. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Nakahara, A.; Wei, D.; Nordlund, D.; Russell, T.P. P3ht/pcbm bulk heterojunction organic photovoltaics: Correlating efficiency and morphology. Nano Lett. 2011, 11, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Gopalan, S.-A.; Lee, K.-D.; Kang, B.-H.; Lee, S.-W.; Lee, J.-S.; Kwon, D.-H.; Lee, S.-H.; Kang, S.-W. Preheated solvent exposure on p3ht:Pcbm thin film: A facile strategy to enhance performance in bulk heterojunction photovoltaic cells. Curr. Appl. Phys. 2014, 14, 1443–1450. [Google Scholar] [CrossRef]
- Kim, Y.; Lim, E. Development of polymer acceptors for organic photovoltaic cells. Polymers 2014, 6, 382–407. [Google Scholar] [CrossRef]
- Gaspar, H.; Figueira, F.; Pereira, L.; Mendes, A.; Viana, J.C.; Bernardo, G. Recent developments in the optimization of the bulk heterojunction morphology of polymer: Fullerene solar cells. Materials 2018, 11, 2560. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Yu, L. How to design low bandgap polymers for highly efficient organic solar cells. Mater. Today 2014, 17, 11–15. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Hong, Z.; Li, G.; Yang, Y. Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 2013, 38, 1909–1928. [Google Scholar] [CrossRef]
- Anantha-Iyengar, G.; Shanmugasundaram, K.; Nallal, M.; Lee, K.-P.; Whitcombe, M.J.; Lakshmi, D.; Sai-Anand, G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog. Polym. Sci. 2019, 88, 1–129. [Google Scholar] [CrossRef]
- Yang, M.H.; Jin, H.C.; Kim, J.H.; Chang, D.W. Synthesis of cyano-substituted conjugated polymers for photovoltaic applications. Polymers 2019, 11, 746. [Google Scholar] [CrossRef]
- Mitul, A.F.; Sarker, J.; Adhikari, N.; Mohammad, L.; Wang, Q.; Khatiwada, D.; Qiao, Q. Efficient csf interlayer for high and low bandgap polymer solar cell. AIP Adv. 2018, 8, 025018. [Google Scholar] [CrossRef]
- Li, J.; Liang, Z.; Peng, Y.; Lv, J.; Ma, X.; Wang, Y.; Xia, Y. 36% enhanced efficiency of ternary organic solar cells by doping a nt-based polymer as an electron-cascade donor. Polymers 2018, 10, 703. [Google Scholar] [CrossRef]
- Hou, W.; Xiao, Y.; Han, G.; Lin, J.-Y. The applications of polymers in solar cells: A review. Polymers 2019, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, W.; Xu, T.; Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 2015, 6, 7327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zuo, L.; Chen, J.; Zhang, Z.; Mai, J.; Lau, T.-K.; Lu, X.; Shi, M.; Chen, H. Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification. J. Mater. Chem. A 2016, 4, 1702–1707. [Google Scholar] [CrossRef]
- Shen, L.; Yu, W.; Long, Y.; Guo, W.; Meng, F.; Ruan, S.; Chen, W. Performance improvement of low-band-gap polymer solar cells by optical microcavity effect. IEEE Electron Device Lett. 2013, 34, 87–89. [Google Scholar] [CrossRef]
- Kim, H.D.; Shimizu, R.; Ohkita, H. Ternary blend polymer solar cells based on wide-bandgap polymer pdcbt and low-bandgap polymer ptb7-th. Chem. Lett. 2018, 47, 1059–1062. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, X.; Cao, G.; Luscombe, C.K. P3ht:Pcbm polymer solar cells with tio2 nanotube aggregates in the active layer. J. Mater. Chem. 2010, 20, 2612–2616. [Google Scholar] [CrossRef]
- Zou, Y.; Gendron, D.; Badrou-Aïch, R.; Najari, A.; Tao, Y.; Leclerc, M. A high-mobility low-bandgap poly(2,7-carbazole) derivative for photovoltaic applications. Macromolecules 2009, 42, 2891–2894. [Google Scholar] [CrossRef]
- Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 2013, 6, 1480–1485. [Google Scholar] [CrossRef]
- Cheun, H.; Kim, J.; Zhou, Y.; Fang, Y.; Dindar, A.; Shim, J.; Fuentes-Hernandez, C.; Sandhage, K.H.; Kippelen, B. Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode. Opt. Express 2010, 18, A506–A512. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Gendron, D.; Neagu-Plesu, R.; Leclerc, M. Synthesis and characterization of new low-bandgap diketopyrrolopyrrole-based copolymers. Macromolecules 2009, 42, 6361–6365. [Google Scholar] [CrossRef]
- Gopalan, S.-A.; Gopalan, A.-I.; Vinu, A.; Lee, K.-P.; Kang, S.-W. A new optical-electrical integrated buffer layer design based on gold nanoparticles tethered thiol containing sulfonated polyaniline towards enhancement of solar cell performance. Sol. Energy Mater. Solar Cells 2018, 174, 112–123. [Google Scholar] [CrossRef]
- Gopalan, S.-A.; Seo, M.-H.; Anantha-Iyengar, G.; Han, B.; Lee, S.-W.; Kwon, D.-H.; Lee, S.-H.; Kang, S.-W. Mild wetting poor solvent induced hydrogen bonding interactions for improved performance in bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 2174–2186. [Google Scholar] [CrossRef]
- Sai-Anand, G.; Gopalan, A.-I.; Lee, K.-P.; Venkatesan, S.; Kang, B.-H.; Lee, S.-W.; Lee, J.-S.; Qiao, Q.; Kwon, D.-H.; Kang, S.-W. A futuristic strategy to influence the solar cell performance using fixed and mobile dopants incorporated sulfonated polyaniline based buffer layer. Sol. Energy Mater. Solar Cells 2015, 141, 275–290. [Google Scholar] [CrossRef]
- Xu, B.; Sai-Anand, G.; Jeong, H.-M.; Kim, S.-W.; Kim, J.-S.; Kwon, J.-B.; Kang, S.-W. Improving air-stability and performance of bulk heterojunction polymer solar cells using solvent engineered hole selective interlayer. Materials 2018, 11, 1143. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Sai-Anand, G.; Unni, G.E.; Jeong, H.-M.; Kim, J.-S.; Kim, S.-W.; Kwon, J.-B.; Bae, J.-H.; Kang, S.-W. Pyridine-based additive optimized p3ht:Pc61bm nanomorphology for improved performance and stability in polymer solar cells. Appl. Surf. Sci. 2019, 484, 825–834. [Google Scholar] [CrossRef]
- Fan, P.; Zheng, Y.; Zheng, D.; Yu, J. Improved efficiency of bulk heterojunction polymer solar cells by doping with iridium complex. Mater. Letters 2017, 186, 161–164. [Google Scholar] [CrossRef]
- Xu, W.-L.; Wu, B.; Zheng, F.; Yang, X.-Y.; Jin, H.-D.; Zhu, F.; Hao, X.-T. Förster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk heterojunction. J. Phys. Chem. C 2015, 119, 21913–21920. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, P.; Xu, X.; Dang, Y.; Chen, X.; Kang, B. Effect of alq3 layer for power-conversion-efficiency enhancement of polymer solar cells. Mater. Letters 2016, 164, 591–594. [Google Scholar] [CrossRef]
- Xu, B.; Sai-Anand, G.; Gopalan, A.-I.; Qiao, Q.; Kang, S.-W. Improving photovoltaic properties of p3ht:Ic60ba through the incorporation of small molecules. Polymers 2018, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Sai-Anand, G.; Dubey, A.; Gopalan, A.-I.; Venkatesan, S.; Ruban, S.; Reza, K.M.; Choi, J.; Lakhi, K.S.; Xu, B.; Qiao, Q.; et al. Additive assisted morphological optimization of photoactive layer in polymer solar cells. Sol. Energy Mater. Solar Cells 2018, 182, 246–254. [Google Scholar] [CrossRef]
- Shen, W.; Chen, W.; Zhu, D.; Zhang, J.; Xu, X.; Jiang, H.; Wang, T.; Wang, E.; Yang, R. High-performance ternary polymer solar cells from a structurally similar polymer alloy. J. Mater. Chem. A 2017, 5, 12400–12406. [Google Scholar] [CrossRef]
- Mai, R.; Wu, X.; Jiang, Y.; Meng, Y.; Liu, B.; Hu, X.; Roncali, J.; Zhou, G.; Liu, J.-M.; Kempa, K.; et al. An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped oleds. J. Mater. Chem. A 2019, 7, 1539–1547. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Q.; Liu, B.; Qiu, Y. Emergence of flexible white organic light-emitting diodes. Polymers 2019, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Musumeci, C.; Jafari, M.J.; Ederth, T.; Inganäs, O. Imaging the phase separation between pedot and polyelectrolytes during processing of highly conductive pedot:Pss films. ACS Appl. Mater. Interfaces 2015, 7, 19764–19773. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, A.A.; Kim, V.; Puttaraju, B.; Sadhanala, A.; Jiao, X.; McNeill, C.R.; Friend, R.H.; Patil, S. Förster resonance energy transfer drives higher efficiency in ternary blend organic solar cells. ACS Appl. Mater. Interfaces 2018, 1, 4874–4882. [Google Scholar] [CrossRef]
- Fu, H.; Choi, M.; Luan, W.; Kim, Y.-S.; Tu, S.-T. Hybrid solar cells with an inverted structure: Nanodots incorporated ternary system. Solid-State Electron. 2012, 69, 50–54. [Google Scholar] [CrossRef]
- Koppe, M.; Egelhaaf, H.-J.; Dennler, G.; Scharber, M.C.; Brabec, C.J.; Schilinsky, P.; Hoth, C.N. Near ir sensitization of organic bulk heterojunction solar cells: Towards optimization of the spectral response of organic solar cells. Adv. Funct. Mater. 2010, 20, 338–346. [Google Scholar] [CrossRef]
- Ameri, T.; Min, J.; Li, N.; Machui, F.; Baran, D.; Forster, M.; Schottler, K.J.; Dolfen, D.; Scherf, U.; Brabec, C.J. Performance enhancement of the p3ht/pcbm solar cells through nir sensitization using a small-bandgap polymer. Adv. Funct. Mater. 2012, 2, 1198–1202. [Google Scholar] [CrossRef]
- Chi, C.-Y.; Chen, M.-C.; Liaw, D.-J.; Wu, H.-Y.; Huang, Y.-C.; Tai, Y. A bifunctional copolymer additive to utilize photoenergy transfer and to improve hole mobility for organic ternary bulk-heterojunction solar cell. ACS Appl. Mater. Interfaces 2014, 6, 12119–12125. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Ohkita, H.; Benten, H.; Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Funct. Mater. 2011, 1, 588–598. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Fan, P.; Yang, X.; Yu, J. Enhanced power conversion efficiency of p3ht: pc71bm bulk heterojunction polymer solar cells by doping a high-mobility small organic molecule. Int. J. Photoenergy 2015, 2015, 8. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Kim, H.D.; Wang, B.; Iriguchi, R.; Ohkita, H. Ternary blend solar cells based on a conjugated polymer with diketopyrrolopyrrole and carbazole units. Front. Energy Res. 2018, 6. [Google Scholar] [CrossRef]
- Kadem, B.; Hassan, A.; Göksel, M.; Basova, T.; Şenocak, A.; Demirbaş, E.; Durmuş, M. High performance ternary solar cells based on p3ht:Pcbm and znpc-hybrids. RSC Adv. 2016, 6, 93453–93462. [Google Scholar] [CrossRef]
PEDOT:PSS (AI 4083) | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) |
---|---|---|---|---|
P3HT:PC61BM | 0.63 | 6.32 | 0.43 | 1.75 |
PCBTDPP 0.1 wt.% | 0.63 | 6.71 | 0.44 | 1.86 |
PCBTDPP 0.2 wt.% | 0.63 | 6.94 | 0.46 | 2.09 |
PCBTDPP 0.3 wt.% | 0.63 | 6.81 | 0.45 | 1.98 |
PEDOT:PSS (PH 500) | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) |
---|---|---|---|---|
P3HT:PC61BM | 0.65 | 14.75 | 0.48 | 4.67 |
PCBTDPP 0.2 wt.% | 0.64 | 16.15 | 0.50 | 5.28 |
Photoactive Layer | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Ref |
---|---|---|---|---|---|
P3HT:PC61BM:CdSe | 0.60 | 8.15 | 0.62 | 3.05 | [48] |
P3HT:PC61BM:PCPDTBT | 0.62 | 8.02 | 0.55 | 2.8 | [49] |
P3HT:PC61BM:Si-PCPDTBT | 0.59 | 11 | 0.62 | 4.0 | [50] |
P3HT:PC61BM:THC8 | 0.62 | 11.92 | 0.53 | 3.88 | [51] |
P3HT:PC61BM:SiPc | 0.58 | 11.1 | 0.65 | 4.13 | [52] |
P3HT:PC61BM:TIPS-pentacene | 0.61 | 10.86 | 0.62 | 4.13 | [53] |
P3HT:PC61BM:PCDPP4T | 0.53 | 11.1 | 0.59 | 3.5 | [54] |
P3HT:PC61BM:ZnPc | 0.62 | 12.6 | 0.68 | 5.3 | [55] |
P3HT:PCBTDPP:PC61BM | 0.64 | 16.15 | 0.50 | 5.28 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Saianand, G.; Roy, V.A.L.; Qiao, Q.; Reza, K.M.; Kang, S.-W. Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells. Polymers 2019, 11, 1423. https://doi.org/10.3390/polym11091423
Xu B, Saianand G, Roy VAL, Qiao Q, Reza KM, Kang S-W. Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells. Polymers. 2019; 11(9):1423. https://doi.org/10.3390/polym11091423
Chicago/Turabian StyleXu, Binrui, Gopalan Saianand, V. A. L. Roy, Qiquan Qiao, Khan Mamun Reza, and Shin-Won Kang. 2019. "Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells" Polymers 11, no. 9: 1423. https://doi.org/10.3390/polym11091423
APA StyleXu, B., Saianand, G., Roy, V. A. L., Qiao, Q., Reza, K. M., & Kang, S.-W. (2019). Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells. Polymers, 11(9), 1423. https://doi.org/10.3390/polym11091423