Environmental Degradation of Plastic Composites with Natural Fillers—A Review
Abstract
:1. Introduction
2. Generalities of Environmental Degradation of Materials
3. Polymer Composite Materials with Natural Fillers
4. Reprocessability of Polymer Composites with Natural Fillers
5. Biodegradability of Polymer Composites with Natural Fillers
6. Weathering and Accelerated Ageing of Polymer Composites with Natural Fillers
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef]
- Rocha, D.B.; Rosa, D.S. Biodegradable Composites: Properties and Uses. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, IL, USA, 2017; Volume 5, pp. 215–250. [Google Scholar]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Hemjinda, S.; Krzan, A.; Chiellini, E.; Miertus, S. EDP Environmentally Degradable Polymeric Materials and Plastics. Guidelines to Standards and Testing Practices; United Nations Industrial Development Organization and the International Centre for Science and High Technology (ICS-UNIDO): Trieste, Italy, 2007. [Google Scholar]
- Mas-Castellà, J.; Urmeneta, J.; Lafuente, R.; Navarrete, A.; Guerrero, R. Biodegradation of poly-β-hydroxyalkanoates in anaerobic sediments. Int. Biodeter. Biodegr. 1995, 35, 155–174. [Google Scholar] [CrossRef]
- Ohtaki, A.; Sato, N.; Nakasaki, K. Biodegradation of poly-ε-caprolactone under controlled composting conditions. Polym. Degrad. Stab. 1998, 61, 499–505. [Google Scholar] [CrossRef]
- Ohtaki, A.; Akakura, N.; Nakasaki, K. Effects of temperature and inoculum on the degradability of poly-[ε]-caprolactone during composting. Polym. Degrad. Stab. 1998, 62, 279–284. [Google Scholar] [CrossRef]
- O’Malley, L. Evaluation and modification of the OECD 301F respirometry biodegradation test method with regard to test substance concentration and inoculum. Water Air Soil Pollut. 2006, 177, 251–265. [Google Scholar] [CrossRef]
- Gartiser, S.; Wallrabenstein, M.; Stiene, G. Assessment of several test methods for the determination of the anaerobic biodegradability of polymers. J. Polym. Environ. 1998, 6, 159–173. [Google Scholar] [CrossRef]
- Bellia, G.; Tosin, M.; Degli-Innocenti, F. The test method of composting in vermiculite is unaffected by the priming effect. Polym. Degrad. Stab. 2000, 69, 113–120. [Google Scholar] [CrossRef]
- Degli-Innocenti, F.; Bellia, G.; Tosin, M.; Kapanen, A.; Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 2001, 73, 101–106. [Google Scholar] [CrossRef]
- ASTM. Standard Terminology Relating to Plastics; ASTM: West Conshohocken, PA, USA, 2012; p. D883. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D883-12.htm (accessed on 20 December 2019).
- Klyosov, A.A. Wood-Plastic Composites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Daniel, I.M.; Ishai, O. Engineering Mechanics of Composite Materials, 2nd ed.; Oxford University Press: Oxford, NY, USA, 2006. [Google Scholar]
- Thomason, J.L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. Part A 2002, 33, 1641–1652. [Google Scholar] [CrossRef]
- Sharath, H.S.; Ramachandra, M. Green Composites: A Review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar]
- Dicker, M.P.M.; Duckworth, P.M.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attibutes and complementary applications. Compos. Part A 2014, 5, 280–289. [Google Scholar] [CrossRef]
- Pappu, A.; Patil, V.; Jain, S.; Mahindrakar, A.; Haque, R.; Thakur, V.K. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. Int. J. Biol. Macromol. 2015, 79, 449–458. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 2014, 299, 9–26. [Google Scholar] [CrossRef]
- Cintil, C.J.; Lovely, M.; Sabu, T. Review of recent research in nanocellulose preparation from different lignocellulosic fibres. Rev. Adv. Mater. Sci. 2014, 37, 20–28. [Google Scholar]
- Kumar, R.; Singh, T.; Singh, H. Solid waste-based hybrid natural fiber polymeric composites. J. Reinf. Plast. Compos. 2015, 34, 1979–1985. [Google Scholar] [CrossRef]
- Kalia, S.; Thakur, K.; Celli, A.; Kiechel, M.A.; Schauer, C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities. A review. J. Environ. Chem. Eng. 2013, 1, 97–112. [Google Scholar] [CrossRef]
- Wróbel-Kwiatkowska, M.; Kropiwnicki, M.; Rymowicz, W. Green Biodegradable Composites Based on Natural Fibers. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, IL, USA, 2017; Volume 5, pp. 283–302. [Google Scholar]
- Payal, R. Reliable Natural-Fibre Augmented Biodegraded Polymer Composites. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, I., Thomas, S., Mishra, R.K., Asiri, A.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 961–975. [Google Scholar]
- Girijappa, Y.G.T.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- AL-Oqla, F.M.; Sapuan, S.M. Investigating the Inherent Characteristic/Performance Deterioration Interactions of Natural Fibers in Bio-Composites for Better Utilization of Resources. J. Polym. Environ. 2017, 26, 1290–1296. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Haque, M.M.; Hasan, M.; Islam, M.S.; Ali, M.E. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol. 2009, 100, 4903–4906. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fin, H.; Sai, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Petchwattana, N.; Covavisaruch, S.; Sametuntikul, J. Recycling of wood plastic composites prepared from poly vinyl chloride and wood flour. Const. Build. Mat. 2012, 28, 557–560. [Google Scholar] [CrossRef]
- Shahi, P.; Behravesh, A.H.; Daryabari, S.Y.; Lotfi, M. Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polym. Compos. 2012, 33, 753–763. [Google Scholar] [CrossRef]
- Adhikary, K.B.; Pang, S.; Staiger, M.P. Dimensional stability and mechanical behavior of woodplastic composites based on recycled and virgin high-density polyethylene. Compos. Part B 2008, 39, 807–815. [Google Scholar] [CrossRef]
- Augier, L.; Sperone, G.; Vaca-Garcia, C.; Borredon, M.E. Influence of the wood fiber filler on the internal recycling of poly vinyl chloride based composites. Polym. Degrad. Stab. 2007, 92, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chan, H.-C.; Lai, S.-M.; Shen, H.-F. Twin Screw Compounding of PE-HD Wood Flour Composites. Int. Polym. Proc. 2001, 16, 100–107. [Google Scholar] [CrossRef]
- Ville, J.; Inceoglu, F.; Ghamri, N.; Pradel, L.; Durin, A.; Valette, R.; Vergnes, B. Influence of Extrusion Conditions on Fiber Breakage along the Screw Profile during Twin Screw Compounding of Glass Fiber-reinforced PA. Int. Polym. Proc. 2013, 28, 49–57. [Google Scholar] [CrossRef]
- Inceoglu, F.; Ville, J.; Ghamri, N.; Pradel, J.L.; Durin, A.; Valette, R.; Vergnes, B. Correlation between processing conditions and fiber breakage during compounding of glass fiber-reinforced polyamide. Polym. Compos. 2011, 32, 3015–3023. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Bajwa, D.S. Degradation in the mechanical and thermo-mechanical properties of natural fiber filled polymer composites due to recycling. Constr. Build. Mater. 2018, 172, 1–9. [Google Scholar] [CrossRef]
- Peres, A.M.; Pires, R.R.; Oréfice, R.L. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr. Polym. 2016, 136, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Benoit, N.; González-Núñez, R. Long-term closed-loop recycling of high-density polyethylene/flax composites. Prog. Rubber Plast. Recycl. Technol. 2018, 34, 171–199. [Google Scholar] [CrossRef]
- Morán, J.; Alvarez, V.; Petrucci, R.; Kenny, J.; Vazquez, A. Mechanical properties of polypropylene composites based on natural fibers subjected to multiple extrusion cycles. J. Appl. Polym. Sci. 2007, 103, 228–237. [Google Scholar] [CrossRef]
- Srebrenkoska, V.; Gaceva, G.B.; Avella, M. Recycling of polypropylene-based eco-composites. Polym. Int. 2008, 57, 1252–1257. [Google Scholar] [CrossRef] [Green Version]
- Cicala, G.; Tosto, C.; Latteri, A.; La Rosa, A.D.; Blanco, I.; Elsabbagh, A.; Russo, P.; Ziegmann, G. Green Composites Based on Blends of Polypropylene with Liquid Wood Reinforced with Hemp Fibers: Thermomechanical Properties and the Effect of Recycling Cycles. Materials 2017, 10, 998. [Google Scholar] [CrossRef] [Green Version]
- Najafi, S.K.; Mostafazadeh-Marznak, M.; Chaharmahali, M. Effect of thermo-mechanical degradation of polypropylene on hygroscopic characteristics of wood flour polyporpylene composites. J. Polym. Environ. 2010, 18, 720–726. [Google Scholar] [CrossRef]
- Lagazzo, A.; Moliner, C.; Bosio, N.; Botter, R.; Arato, E. Evaluation of the Mechanical and Thermal Properties Decay of PHBV/Sisal and PLA/Sisal Biocomposites at Different Recycle Steps. Polymers 2019, 11, 1477. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, D.S.; Bhattacharjee, S. Impact of Recycling on the Mechanical and Thermo-Mechanical Properties of Wood. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, IL, USA, 2017; Volume 3, pp. 271–292. [Google Scholar]
- Duigou, A.L.; Pillin, I.; Bourmand, A.; Davies, P.; Baley, C. Effect of recycling on mechanical behavior of bio-compostable flax/poly (L-lactide) composites. Compos. Part A 2008, 39, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Dan-Mallam, Y.; Abdullah, M.Z.; Megat Yussof, P.S.M. Influence of Recycling Frequency on Mechanical and Physical Properties of Kenaf Fiber Reinforced Polyoxymethylene Composite. J. Nat. Fibers 2016, 13, 532–546. [Google Scholar] [CrossRef]
- Byrom, D. The Synthesis and Biodegradation of Polyhydroxyalkanoates from Bacteria. Int. Biodeter. Biodegr. 1993, 31, 199–208. [Google Scholar] [CrossRef]
- Muniyasamy, S.; John, M.J. Biodegradability of Biobased Polymeric Materials in Natural Environments. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, IL, USA, 2017; Volume 5, pp. 625–654. [Google Scholar]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Rutkowska, M.; Heimowska, A.; Krasowska, K.; Janik, H. Biodegradability of Polyethylene Starch Blends in Sea Water. Pol. J. Environ. Stud. 2002, 11, 267–271. [Google Scholar]
- Ruka, D.R.; Sangwan, P.; Garvey, C.J.; Simon, G.P.; Dean, K.M. Biodegradability of poly-3-hydroxybutyrate/bacterial cellulose composites under aerobic conditions—Measured via evolution of carbon dioxide, spectroscopic and diffraction methods. Environ. Sci. Technol. 2015, 49, 9979–9986. [Google Scholar] [CrossRef]
- Gómez, E.F.; Michel, F.C., Jr. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym, Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Taylor, A.; Yadama, V.; Englund, K.R.; Harper, D. Wood Plastic Composites—A Primer; The University of Tennessee: Knoxville, TN, USA, 2009. Available online: https://ag.tennessee.edu/fwf/Documents/ATaylor/Wood-plastic-composites-primer_PB1779.pdf (accessed on 20 December 2019).
- Chan, C.M.; Vandi, L.-J.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B. Composites of wood and biodegradable thermoplastics: A review. Polym. Rev. 2018, 58, 444–494. [Google Scholar] [CrossRef]
- Schirp, A.; Wolcott, M.P. Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites. Wood Fiber Sci. 2005, 37, 643–652. [Google Scholar]
- Candelier, K.; Atli, A.; Alteyrac, A. Termite and decay resistance of bioplast-spruce green wood-plastic composites. Eur. J. Wood Wood Prod. 2019, 77, 157–169. [Google Scholar] [CrossRef]
- Mastalygina, E.E.; Popov, A.A.; Pantyukhov, P.V. Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mould fungi. IOP Conf. Ser. Mater. Sci. Eng. 2017, 213, 012011. [Google Scholar] [CrossRef] [Green Version]
- Tufan, M.; Akbaş, S.; Güleç, T.; Taşçıoğlu, C.; Alma, M.H. Mechanical, thermal, morphological properties and decay resistance of filled hazelnut husk polymer composites. Maderas Cienc. Tecnol. 2015, 17, 865–874. [Google Scholar]
- Sahi, S.; Djidjelli, H.; Boukerrou, A. Biodegradation study of bio-corn flour filled low density polyethylene composites assessed by natural soil. J. Polym. Eng. 2016, 36, 245–252. [Google Scholar] [CrossRef]
- Ray, S.S.; Yamada, K.; Okamoto, M.; Ueda, K. Control of biodegradability of polylactide via nanocomposite technology. Macromol. Mater. Eng. 2003, 288, 203–208. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Sun, X. Mechanical properties of poly(lactic acid)/starch composites compatibilised by maleic anhydride. Biomacromolecules 2004, 5, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, U.R.; Battacharya, M. Method of grafting functional groups to synthetic polymers for making biodegradable plastics. J. Appl. Polym. Sci. 1994, 52, 617–628. [Google Scholar] [CrossRef]
- Vasile, C.; Pamfil, D.; Râpă, M.; Darie-Niţă, R.N.; Mitelut, A.C.; Popa, E.E.; Popescu, P.A.; Draghici, M.C.; Popa, M.E. Study of the soil burial degradation of some PLA/CS Biocomposites. Compos. Part B 2018, 142, 251–262. [Google Scholar] [CrossRef]
- Palsikowski, P.A.; Kuchnier, C.N.; Pinheiro, I.F.; Morales, A.R. Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J. Polym. Environ. 2018, 26, 330–341. [Google Scholar] [CrossRef]
- Rudnik, E.; Briassoulis, D. Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind. Crop. Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Gu, J.; Tan, H. Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites. Int. J. Biol. Macromol. 2018, 113, 338–344. [Google Scholar] [CrossRef]
- Ahn, H.K.; Huda, M.S.; Smith, M.C.; Mulbry, W.; Schmidt, W.F.; Reeves, J.B. Biodegradability of injection moulded bioplastic pots containing polylactic acid and poultry feather fiber. Bioresour. Technol. 2011, 102, 4930–4933. [Google Scholar] [CrossRef]
- Mosnáčková, K.; Šišková, A.; Janigová, I.; Kollár, J.; Šlosár, M.; Chmela, Š.; Alexy, P.; Chodák, I.; Bočkaj, J.; Mosnáček, J. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches. Chem. Pap. 2016, 70, 1268–1278. [Google Scholar] [CrossRef]
- Mosnáčková, K.; Danko, M.; Šišková, A.; Falco, L.M.; Janigová, I.; Chmela, Š.; Vanovčanová, Z.; Omaníková, L.; Chodák, I.; Mosnáček, J. Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory ageing conditions. RSC Adv. 2017, 7, 47132–47142. [Google Scholar] [CrossRef] [Green Version]
- Stoleru, E.; Hitruc, E.G.; Vasile, C.; Oprică, L. Biodegradation of poly(lactic acid)/chitosan stratified composites in presence of the Phanerochaete chrysosporium fungus. Polym. Degrad. Stab. 2017, 143, 118–129. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Luzi, F.; Fortunati, E.; Puglia, D.; Petrucci, R.; Kenny, J.M.; Torre, L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym. Degrad. Stab. 2015, 121, 105–115. [Google Scholar] [CrossRef]
- Petinakis, E.; Liu, X.; Yu, L.; Way, C.; Sangwan, P.; Dean, K.; Bateman, S.; Edward, G. Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Polym. Degrad. Stab. 2010, 95, 1704–1707. [Google Scholar] [CrossRef]
- Wu, C.-S. Characterizing biodegradation of PLA and PLA-g-AA/Starch films using a phosphate-solubilizing Bacillus species. Macromol. Biosci. 2008, 8, 560–567. [Google Scholar] [CrossRef]
- Othman, M.; Ibrahim, N.A.; Ruzaidi, C.M.; Zakaria, N.; Halim, Z. Biodegradability analysis of KBF reinforced poly(lactic acid) biocomposites. Adv. Mater. Res. 2012, 576, 434–437. [Google Scholar] [CrossRef]
- Andersons, J.; Joffe, R. Estimation of the tensile strength of an oriented flax fiber-reinforced polymer composite. Compos. Part A 2011, 42, 1229–1235. [Google Scholar] [CrossRef]
- Tsuji, H. Degradation of Poly(Lactide)-Based Biodegradable Materials; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 9–42. [Google Scholar]
- Kumar, R.; Yakubu, M.K.; Anandjiwala, R.D. Biodegradation of flax fiber reinforced poly lactic acid. Express Polym. Lett. 2010, 4, 423–430. [Google Scholar] [CrossRef]
- Bayer, T.; Geith, M.; Somashekar, A.A.; Bhattacharyya, D. Influence of fibre architecture on the biodegradability of FLAX/PLA composites. Int. Biodeter. Biodegr. 2014, 96, 18–25. [Google Scholar] [CrossRef]
- Iovino, R.; Zullo, R.; Rao, M.A.; Cassar, L.; Gianfreda, L. Biodegradation of poly(lactic acid)/starch/coir Biocomposites under controlled composting conditions. Polym. Degrad. Stab. 2008, 93, 147–157. [Google Scholar] [CrossRef]
- Owen, A.; Bergmann, A. On the fractal character of polymer spherulites: An ultra small-angle X-ray scattering study of poly[(R)-3-hydroxybutyrate]. Polym. Int. 2004, 53, 12–14. [Google Scholar] [CrossRef]
- Xie, Y.P.; Noda, I.; Akpaiu, Y.A. Influence of cooling rate on the thermal behavior and solid-state morphologies of polyhydroxyalkanoates. J. Appl. Polym. Sci. 2008, 109, 2259–2268. [Google Scholar] [CrossRef]
- Savenkova, L.; Gercberga, Z.; Nikolaeva, V.; Dzene, A.; Bibers, I.; Kalnin, M. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem. 2000, 35, 573–579. [Google Scholar] [CrossRef]
- Mergaert, J.; Anderson, C.; Wouters, A.; Swings, J.; Kersters, K. Biodegradation of Polyhydroxyalkanoates. FEMS Microbiol. Lett. 1992, 103, 317–321. [Google Scholar] [CrossRef]
- Terzopoulou, Z.N.; Papageorgiou, G.Z.; Papadopoulou, E.; Athanassiadou, E.; Reinders, M.; Bikiaris, D.N. Development and Study of Fully Biodegradable Composite Materials Based on Poly(butylene succinate) and Hemp Fibers or Hemp Shives. Polym. Compos. 2014, 37, 407–421. [Google Scholar] [CrossRef]
- Kumar, A.P.; Singh, R.P. Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J. Appl. Polym. Sci. 2007, 104, 2672–2682. [Google Scholar] [CrossRef]
- LeBaron, P.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 1999, 15, 11–29. [Google Scholar] [CrossRef]
- Islam, M.S.; Talib, Z.A.; Hasan, M.; Ramli, I.; Haafiz, M.K.M.; Jawaid, M.; Islam, A.; Inuwa, I.M. Evaluation of Mechanical, Morphological, and Biodegradable Properties of Hybrid Natural Fiber Polymer Nanocomposites. Polym. Compos. 2017, 38, 583–587. [Google Scholar] [CrossRef]
- Spiridon, I.; Popescu, M.C.; Bodârlău, R.; Vasile, C. Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch. Polym. Degrad. Stab. 2008, 93, 1884–1890. [Google Scholar] [CrossRef]
- Azevedo, J.B.; Carvalho, L.H.; Canedo, E.L.; Barbosa, J.D.V.; Silva, M.W.S. Biodegradation Evaluation of Composites with Natural Fiber by Weight Loss and CO2 Production. Rev. Virtual Quim. 2016, 8, 1115–1129. [Google Scholar] [CrossRef]
- Moreira, A.A.; Mali, S.; Yamashita, F.; Bilck, A.P.; Tereza de Paula, M.; Merci, A.; Martinez de Oliveira, A.L. Biodegradable plastic designed to improve the soil quality and microbiological activity. Polym. Degrad. Stab. 2018, 158, 52–63. [Google Scholar] [CrossRef]
- Cardoso, E.C.L.; Scagliusi, S.R.; Lugão, A.B. The Effect of Gamma Radiation on Biodegradability of Natural Fiber/PP-HMSPP Foams: A Study of Thermal Stability and Biodegradability. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Scrivener Publishing LLC: Beverly, IL, USA, 2017; Volume 4, pp. 339–354. [Google Scholar]
- Cardoso, E.C.L.; Scagliusi, S.R.; Lugão, A.B. Gamma-Radiation Effect on Biodegradability of Synthetic PLA Structural Foams PP/HMSPP Based. In Characterization of Minerals, Metals, and Materials; Ikhmayies, S., Li, B., Carpenter, J.S., Li, J., Hwang, J.-Y., Monteiro, S.N., Firrao, D., Zhang, M., Peng, Z., Escobedo-Diaz, J.P., et al., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Butnaru, E.; Darie-Niţă, R.N.; Zaharescu, T.; Balaeş, T.; Tănase, C.; Hitruc, G.; Doroftei, F.; Vasile, C. Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites. Radiat. Phys. Chem. 2016, 125, 134–144. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.E.; Crocker, B.K.; Gray, A.D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 2016, 35, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Ryberg, M.W.; Hauschild, M.Z.; Wang, F.; Averous-Monnery, S.; Laurent, A. Global environmental losses of plastics across their value chains. Resour. Conserv. Recycl. 2018, 151, 104459. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.J.P.M.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20360–20371. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Zylstra, E.R. Accumulation of wind-dispersed trash in desert environments. J. Arid Environ. 2013, 89, 13–15. [Google Scholar] [CrossRef]
- Ng, E.-L.; Lwanga, E.H.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overviewof microplastic and nanoplastic pollution in agroecosystems. Sci. Total. Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- UK Parliament. House of Commons Environmental Audit Committee Oral Evidence: Environmental Impact of Microplastics Inquiry. HC 925 Monday 9 May 2016. Available online: https://www.parliament.uk/business/committees/committees-a-z/commons-select/environmental-audit-committee/inquiries/parliament-2015/environmental-impact-of-microplastics-15-16/ (accessed on 20 December 2019).
- Lambert, S.; Scherer, C.; Wagner, M. Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties. Integr. Environ. Assess. Manag. 2017, 13, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Frère, L.; Maignien, L.; Chalopin, M.; Huvet, A.; Rinnert, E.; Morrison, H.; Kerninon, S.; Cassone, A.L.; Lambert, C.; Reveillaud, J.; et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ. Pollut. 2018, 242, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.-H.; Kirkham, M.B. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef]
- Horn, D.; Miller, M.; Anderson, S.; Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 2019, 139, 231–237. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 2016, 4501. [Google Scholar]
- Kershaw, P.J. Biodegradable Plastics and Marine Litter: Misconceptions, Concerns and Impacts on Marine Environments; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2015. [Google Scholar]
- Shahzad, A.; Isaac, D.H. Weathering of Lignocellulosic Polymer Composites. In Lignocellulosic Polymer Composites: Processing, Characterization, and Properties; Thakur, V.K., Ed.; Scrivener Publishing LLC: Beverly, IL, USA, 2014. [Google Scholar]
- Taylor, C.A.; Amiri, A.; Webster, D.C.; Ulven, C.A. Long-term behavior of bio-composites for structural applications. In Proceedings of the Composites and Advanced Materials Conference, Anaheim, CA, USA, 26–29 September 2016. [Google Scholar]
- Friedrich, D. Comparative study on artificial and natural weathering of wood-polymer compounds: A comprehensive literature review. Case Stud. Constr. Mater. 2018, 9, e00196. [Google Scholar] [CrossRef]
- Friedrich, D. An analytic algorithm-based method to assess the long term structural performance of wood-polymer composites. J. Buil. Eng. 2018, 20, 367–376. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Design 2013, 47, 424–442. [Google Scholar] [CrossRef] [Green Version]
- Badji, C.; Beigbeder, J.; Garay, H.; Bergeret, A.; Bénézet, J.-C.; Desauziers, V. Correlation between artificial and natural weathering of hemp fibers reinforced polypropylene Biocomposites. Polym. Degrad. Stab. 2018, 148, 117–131. [Google Scholar] [CrossRef]
- Rosu, D.; Visakh, P.M. (Eds.) Photochemical Behavior of Multicomponent Polymeric-based Materials, Advanced Structure Materials; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Roşu, D.; Teacă, C.-A.; Bodirlău, R.; Roşu, L. FTIR and color change of the modified wood as a result of artificial light irradiation. J. Photochem. Photobiol. B 2010, 99, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Chang, H.T.; Wu, C.L.; Chang, S.T. Influences of extractives on the photodegradation of wood. Polym. Degrad. Stab. 2010, 95, 516–521. [Google Scholar] [CrossRef]
- Teacă, C.-A.; Bodîrlău, R. Photochemical Behavior of Wood Based Materials. In Photochemical Behavior of Multicomponent Polymeric-Based Materials; Rosu, D., Visakh, P.M., Eds.; Springer: Cham, Switzerland, 2016; pp. 91–107. [Google Scholar]
- Peng, Y.; Lin, R.; Cao, I. Effects of antioxidants on photodegradation of wood flour/polypropylene composites during artificial weathering. Bioresources 2014, 9, 5817–5830. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Lin, R.; Cao, J. Characterization of surface chemistry and crystallization behaviour of polypropylene composites reinforced with wood flour, cellulose and lignin during accelerated weathering. Appl. Surf. Sci. 2015, 632, 253–259. [Google Scholar] [CrossRef]
- Selden, R.; Nystrom, B.; Langstrom, R. UV aging of polypropylene/wood fiber composites. Polym. Compos. 2004, 25, 543–553. [Google Scholar] [CrossRef]
- Mellor, D.C.; Moir, A.B.; Scott, G. The effect of processing conditions on the u.v. stability of polyolefins. Eur. Polym. J. 1973, 9, 219–225. [Google Scholar] [CrossRef]
- Rouillon, C.; Bussiere, P.-O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.-L. Is Carbonyl Index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 2016, 128, 200–208. [Google Scholar] [CrossRef]
- Philippart, J.L.; Sinturel, C.; Arnaud, R.; Gardette, J.L. Influence of the exposure parameters on the mechanism of photooxidation of polypropylene. Polym. Degrad. Stab. 1999, 64, 213–225. [Google Scholar] [CrossRef]
- Geuskens, G.; Kabamba, M.S. Photo-oxidation of polymers-Part V: A new chain scission mechanism in polyolefins. Polym. Degrad. Stab. 1982, 4, 69–76. [Google Scholar] [CrossRef]
- Lacoste, J.; Arnaud, R.; Singh, R.P.; Lemaire, J. Modelization of the photocatalyzed oxidation of polyolefins, 3. Oxidation of model hydrocarbons with ZnO. Makromol. Chem. 1988, 189, 651–661. [Google Scholar] [CrossRef]
- Panthapulakkal, S.; Sain, M. Studies on the water absorption properties of short hemp-glass fiber hybrid polypropylene composites. J. Compos. Mater. 2007, 41, 1871–1883. [Google Scholar] [CrossRef]
- Bharath, K.N. Moisture absorption characteristics of Areca/Maize reinforced hybrid polymer composites. Int. J. Adv. Eng. Appl. 2010, 1, 207–2011. [Google Scholar]
- Jiang, N.; Yu, T.; Li, Y. Effect of Hydrothermal Aging on Injection Moulded Short Jute Fiber Reinforced Poly(Lactic Acid) (PLA) Composites. J. Polym. Environ. 2018, 26, 3176–3186. [Google Scholar] [CrossRef]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.E.R.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Senthilrajan, S.; Venkateshwaran, N. Ageing and Its Influence on Vibration Characteristics of Jute/Polyester Composites. J. Polym. Environ. 2019, 27, 2144–2155. [Google Scholar] [CrossRef]
- Cantero, G.; Arbelaiz, A.; Mugika, F.; Valea, A.; Mondragon, I. Mechanical behavior of wood/polypropylene composites: Effects of fibre treatments and ageing processes. J. Reinf. Plast. Compos. 2003, 22, 37–50. [Google Scholar] [CrossRef]
- Das, G.; Biswas, B. Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber–epoxy composites. J. Reinf. Plast. Compos. 2016, 35, 644–653. [Google Scholar] [CrossRef]
- Zamri, M.H.; Akil, H.M.; Bakar, A.A.; Ishak, Z.A.M.; Cheng, L.W. Effect of water absorption on pultruded jute/glass fiber-reinforced unsaturated polyester hybrid composites. J. Compos. Mater. 2012, 46, 51–61. [Google Scholar] [CrossRef]
- Nguyen-Duy, C.; Makke, A.; Montay, G. A Pull-Out Test to Characterize the Fiber/Matrix Interfaces Aging of Hemp Fiber Reinforced Polypropylene Composites. In Proceedings of the International Conference on Advances in Computational Mechanics, Phu Quoc Island, Vietnam, 2–4 August 2017; Nguyen-Xuan, H., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 477–484. [Google Scholar]
- Fortini, A.; Mazzanti, V. Combined effect of water uptake and temperature on wood polymer composites. J. Appl. Polym. Sci. 2018, 135, 46674. [Google Scholar] [CrossRef]
- Seki, Y.; Sever, K.; Sarkanat, M.; Sen, I.; Aral, A. Jute/polyester composites: The effect of water aging on the interlaminar shear strength. In Proceedings of the 6th International Advanced Technologies Symposium, Elazg, Turkey, 16–18 May 2011; pp. 368–371. [Google Scholar]
- Onggo, H.; Pujiastuti, S. Effect of weathering on functional group and mechanical properties of polypropylene–kenaf composites. Indones. J. Mater. Sci. 2010, 11, 1–6. [Google Scholar]
- Popa, M.I.; Pernevan, S.; Sirghie, C.; Spiridon, I.; Chambre, D.; Copolovici, D.M.; Popa, N. Mechanical properties and weathering behavior of polypropylene-hemp shives composites. J. Chem. 2013, 1–8. [Google Scholar] [CrossRef]
- Acharya, S.K.; Mishra, P.; Mehar, S.K.; Dikshit, V. Weathering behavior of bagasse fiber reinforced polymer composite. J. Reinf. Plast. Compos. 2008, 27, 1839–1846. [Google Scholar] [CrossRef]
- Badji, C.; Beigbeder, J.; Garay, H.; Bergeret, A.; Bénézet, J.-C.; Desauziers, V. Natural weathering of hemp fibers reinforced polypropylene biocomposites: Relationships between visual and surface aspects, mechanical properties and microstructure based on statistical approach. Compos. Sci. Technol. 2018, 167, 440. [Google Scholar] [CrossRef] [Green Version]
- Yallew, T.B.; Aregawi, S.; Kumar, P.; Singh, I. Response of natural fiber reinforced polymer composites when subjected to various environments. Int. J. Plast. Technol. 2018, 22, 56–72. [Google Scholar] [CrossRef]
- Catto, A.L.; Montagna, L.S.; Almeida, S.H.; Silveira, R.M.B. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. Int. Biodeter. Biodegr. 2016, 109, 11–22. [Google Scholar] [CrossRef]
- Catto, A.L.; Montagna, L.S.; Santana, R.M.C. Abiotic and Biotic Degradation of Post-consumer Polypropylene/Ethylene Vinyl Acetate: Wood Flour Composites Exposed to Natural Weathering. Polym. Composite 2017, 38, 571–582. [Google Scholar] [CrossRef]
- Ratanawilai, T.; Taneerat, K. Alternative polymeric matrices for wood-plastic composites: Effects on mechanical properties and resistance to natural weathering. Constr. Build. Mater. 2018, 172, 349–357. [Google Scholar] [CrossRef]
- Vedrtnam, A.; Kumar, S.; Chaturvedi, S. Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites. Compos. Part B 2019, 176, 107282. [Google Scholar] [CrossRef]
- Kumar, S.; Vedrtnam, A.; Pawar, S.J. Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to natural weathering of wood-plastic composites. Front. Struct. Civ. Eng. 2019, 13, 1446–1462. [Google Scholar] [CrossRef]
- Kajaks, J.; Kalnins, K.; Matvejs, J. Accelerated Aging of WPCs Based on Polypropylene and Plywood Production Residues. Open Eng. 2019, 9, 115–128. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Sharma, B.K.; Khan, A.R.; Arnold, J.C.; Alston, S.M.; Chandrasekaran, S.R.; Al-Dhafeeri, A.T. Thermal Degradation Kinetics of Virgin Polypropylene (PP) and PP with Starch Blends Exposed to Natural Weathering. Ind. Eng. Chem. Res. 2017, 56, 5210–5220. [Google Scholar] [CrossRef]
- Srimalanon, P.; Yamsaengsung, W.; Kositchaiyong, A.; Wimolmala, E.; Isarangkura, K.; Sombatsompop, N. Effects of UV-accelerated weathering and natural weathering conditions on anti-fungal efficacy of wood/PVC composites doped with propylene glycol-based HPQM. Express Polym. Lett. 2016, 10, 289–301. [Google Scholar] [CrossRef]
- Pang, M.-M.; Pun, M.-Y.; Ishak, Z.A.M. Natural Weathering Studies of Biobased Thermoplastic Starch from Agricultural Waste/Polypropylene Blends. J. Appl. Polym. Sci. 2013, 129, 3237–3246. [Google Scholar] [CrossRef]
- Pilarski, J.M.; Matuana, L.M. Durability of wood flour-plastic composites exposed to accelerated freeze– thaw cycling. Part I. Rigid PVC matrix. J. Vinyl Addit. Techn. 2005, 11, 1–8. [Google Scholar] [CrossRef]
- Spiridon, I.; Darie, R.N.; Kangas, H. Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos. Part B 2016, 92, 19–27. [Google Scholar] [CrossRef]
- Kumar, A.P.; Depan, D.; Singh, A.R.P. Durability of natural fiber-reinforced composites of ethylene–propylene copolymer under accelerated weathering and composting conditions. J. Thermoplast. Compos. 2005, 18, 489–508. [Google Scholar] [CrossRef]
- Mittal, M.; Chaudhary, R. Biodegradability and Mechanical Properties of Pineapple Leaf/Coir Fiber Reinforced Hybrid Epoxy Composites. Mater. Res. Express 2019, 6, 045301. [Google Scholar] [CrossRef]
- Fiore, V.; Sanfilippo, C.; Calabrese, L. Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment. Polym. Test. 2019, 80, 106100. [Google Scholar] [CrossRef]
- Dorado, C.; Mullen, C.A.; Boateng, A.A. H-ZSM5 Catalyzed Co-Pyrolysis of Biomass and Plastics. ACS Sustain. Chem. Eng. 2014, 2, 301–311. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradablemulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Dong, H.; Liu, T.; Han, Z.; Sun, Q.; Li, R. Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties. J. Environ. Biol. 2015, 36, 677–684. [Google Scholar]
- Mosnáčková, K.; Šlosár, M.; Kollár, J.; Janigová, I.; Šišková, A.; Chmela, S.; Sikorska, W.; Perďochová, D.; Gálisovád, I.; Alexyd, P.; et al. Ageing of plasticized poly(lactic acid)/poly(3-hydroxybutyrate)/carbon black mulching films during one season of sweet pepper production. Eur. Polym. J. 2019, 114, 81–89. [Google Scholar] [CrossRef]
- Chan, C.M.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B.; Vandi, L.-J. Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering. Polym. Test. 2019, 73, 214–221. [Google Scholar] [CrossRef]
- Ling, P.A.; Ismail, H.; Bakar, A.A. Linear Low Density Polyethylene/Poly (Vinyl Alcohol)/Kenaf Composites: Effect of Natural Weathering on Functional Group, Weight Loss Characteristics, Tensile, Morphological and Thermal Properties. Sains Malays. 2018, 47, 571–580. [Google Scholar]
- Ariawan, D.; Salim, M.S.; Taib, R.M.; Thirmizir, M.Z.A.; Ishak, Z.A.M. Durability of alkali and heat-treated kenaf fiber/unsaturated polyester composite fabricated by resin transfer moulding under natural weathering exposure. Adv. Polym. Technol. 2017, 37, 1420. [Google Scholar] [CrossRef] [Green Version]
- Moriana, R.; Strömberg, E.; Ribes, A.; Karlsson, S. Degradation Behaviour of Natural Fibre Reinforced Starch-Based Composites under Different Environmental Conditions. J. Renew. Mater. 2014, 2, 145–156. [Google Scholar] [CrossRef]
- Uitterhaegen, E.; Parinet, J.; Labonne, L.; Mérian, T.; Ballas, S.; Véronèse, T.; Merah, O.; Talou, T.; Stevens, C.V.; Chabert, F.; et al. Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Compos. Part A 2018, 113, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Wang, Y. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites. MATEC Web Conf. 2016, 67, 06041. [Google Scholar] [CrossRef]
Fiber | Density (g/cm3) | Elongation at Break (%) | Elastic (Young) Modulus (GPa) | Tensile Strength (MPa) |
---|---|---|---|---|
Aramid | 1.4 | 3.3–3.7 | 63–67 | 3000–3150 |
Carbon | 1.4 | 1.4–1.8 | 230–240 | 4000 |
E-glass | 2.5 | 0.5 | 70 | 2000–3000 |
S-glass | 2.5 | 2.8 | 86 | 4570 |
Polyester | 1.2–1.5 | 2.0–4.5 | 2 | 40–90 |
Polyhydroxyalkanoates | 1.1–1.4 | 1–6 | 3–6 | 35–100 |
Cotton | 1.2–1.6 | 7.0–8.0 | 5.5–12.6 | 250–500 |
Coir | 1.2 | 24–51 | 6 (40) | 140–593 |
Flax | 1.2–2.4 | 2.3–3.2 | 27.6–80.0 | 500–1500 |
Hemp | 1.3 | 2–40 | 45 (70) | 690 (530–1100) |
Jute | 1.2–1.8 | 1.5–2.5 | 10–55 | 325–800 |
Kenaf | 1.2–1.6 | 1.6 | 41 (53) | 745–930 |
Sisal | 1.2-1.5 | 2.0–3.2 (8) | 9.4–22.0 | 310–855 |
Abaca | 1.5 | 3.4 | 41 | 410–810 |
Henequen | 1.4 | 4.8 | 13.2 | 500 |
Pineapple | 1.5 | 0.8–3.2 | 82 | 1020–1600 |
Banana | 1.3 | 2.0–3.7 | 27–32 | 720–910 |
Nettle | 1.5 | 1.7 | 38 | 650 |
Ramie | 1.4 | 1.2–3.7 | 23–44 | 500–915 |
Bond | Bond Dissociation Energy (kJ/mole) | Wavelength (nm) |
---|---|---|
C–C (aromatic) | 519 | 231 |
C–H (aromatic) | 431 | 278 |
C–H (methane) | 427 | 280 |
O–H (methanol) | 419 | 286 |
C–O (ethanol) | 385 | 311 |
C–O (methanol) | 373 | 321 |
CH3COO–C (methyl esters) | 360 | 333 |
C–C (ethane) | 352 | 340 |
C–Cl (methyl chloride) | 343 | 349 |
C–COOCH3 (acetone) | 331 | 362 |
C–O (methyl ether) | 318 | 376 |
Fiber | Wood | Jute | Flax | Hemp | Ramie | Sisal | Pineapple |
---|---|---|---|---|---|---|---|
EMC (%) | 12 | 12 | 7 | 9 | 9 | 11 | 13 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brebu, M. Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers 2020, 12, 166. https://doi.org/10.3390/polym12010166
Brebu M. Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers. 2020; 12(1):166. https://doi.org/10.3390/polym12010166
Chicago/Turabian StyleBrebu, Mihai. 2020. "Environmental Degradation of Plastic Composites with Natural Fillers—A Review" Polymers 12, no. 1: 166. https://doi.org/10.3390/polym12010166
APA StyleBrebu, M. (2020). Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers, 12(1), 166. https://doi.org/10.3390/polym12010166