3D Finite Element Pseudodynamic Analysis of Deficient RC Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Database
2.2. Pseudodynamic Finite Element Models and Analyses
2.2.1. Concrete
2.2.2. Longitudinal and Transverse Steel
2.2.3. Fiber Reinforced Polymer Jacket
2.2.4. Boundary Conditions and Contacts
2.2.5. Mesh
2.2.6. Element Sizing
3. Analytical Results
3.1. Stress-Strain Curves
3.2. Characteristic Concrete Damage and FRP and Steel Deformation Variation
3.2.1. Specimen Series BS1C
3.2.2. Specimen Series BS2C
3.2.3. Specimen Series LSR-R-1-3
3.2.4. Specimen Series R2.0H2CL
3.3. Parametric Study
- BS2C3C (the original specimen with yield stress of longitudinal steel 560 MPa).
- BS2C3C_360 (yield stress of longitudinal steel 360 MPa).
- BS2C3C_450 (yield stress of longitudinal steel 450 MPa).
3.4. FE Models for Columns Confined with Composite Ropes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumutha, R.; Vaidyanathan, R.; Palanichamy, M.S. Behaviour of reinforced concrete rectangular columns strengthened using GFRP. Cem. Concr. Compos. 2007, 29, 609–615. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Karabinis, A.I. Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading. Materials and Structures 2012, 45, 957–975. [Google Scholar] [CrossRef]
- Rousakis, T.; Tsakiris, S.; Karabinis, A. Adequate FRP Confinement of Rectangular Reinforced Concrete Columns Suffering from Premature Bars’ Buckling. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering–CICE 2012, Rome, Italy, 13–15 June 2012. [Google Scholar]
- Campione, G.; La Mendola, L.; Monaco, A.; Valenza, A.; Fiore, V. Behavior in compression of concrete cylinders externally wrapped with basalt fibers. Compos. Part B Eng. 2014, 69, 576–586. [Google Scholar] [CrossRef]
- Formisano, A.; Mazzolani, F.M. On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings. Comput. Struct. 2015, 159, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, A.; Russo, S.; Sciarretta, F. Preliminary investigation on FRP profiles for the structural retrofit of masonry structures. Key Eng. Mater. 2017, 747, 77–84. [Google Scholar] [CrossRef]
- Casalegno, C.; Russo, S.; Sciarretta, F. Numerical analysis of a masonry panel reinforced with pultruded FRP frames. Mech. Compos. Mater. 2018, 54, 207–220. [Google Scholar] [CrossRef]
- Tsonos, A.-D.G. A new method for earthquake strengthening of old R/C structures without the use of conventional reinforcement. Struct. Eng. Mech. 2014, 52. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Golias, E. Full scale tests of RC joints with minor to moderate seismic damage repaired using C-FRP sheets. Earthq. Struct. 2018, 15, 617–627. [Google Scholar] [CrossRef]
- Shimomura, T.; Phong, N.H. Structural performance of concrete members reinforced with continuous fiber rope. In Proceedings of the FRPRCS-8 Conference University of Patras, Patra, Greece, 16–18 July 2007. [Google Scholar]
- Rousakis, T. Hybrid Confinement of Concrete by Fiber-Reinforced Polymer Sheets and Fiber Ropes under Cyclic Axial Compressive Loading. J. Compos. Constr. ASCE 2013, 17, 732–743. [Google Scholar] [CrossRef]
- Rousakis, T. Elastic Fiber Ropes of Ultrahigh-Extension Capacity in Strengthening of Concrete through Confinement. J. Mater. Civ. Eng. ASCE 2014, 26, 34–44. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Tourtouras, I.S. RC columns of square section—Passive and active confinement with composite ropes. Compos. Part B 2014, 58, 573–581. [Google Scholar] [CrossRef]
- Rousakis, T. Reusable and recyclable nonbonded composite tapes and ropes for concrete columns confinement. Compos. Part B 2016, 15–22. [Google Scholar] [CrossRef]
- Kaya, E.; Kutan, C.; Sheikh, S.; Ilki, A. Flexural retrofit of support regions of reinforced concrete beams with anchored FRP ropes using NSM and ETS methods under reversed cyclic loading. J. Compos. Constr. ASCE 2016, 21. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Kosmidou, P.-M.K.; Papadopoulos, N.A. Investigation of a New Strengthening Technique for RC Deep Beams Using Carbon FRP Ropes as Transverse Reinforcements. Fibers 2018, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Karabinis, A.I.; Rousakis, T.C. Concrete confined by FRP material: A plasticity approach. Eng. Struct. 2002, 24, 923–932. [Google Scholar] [CrossRef]
- Li, G. Experimental study of FRP confined concrete cylinders. Eng. Struct. 2006, 28, 1001–1008. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 2004, 8, 539–548. [Google Scholar] [CrossRef]
- Ilki, A.; Peker, O.; Karamuk, E.; Demir, C.; Kumbasar, N. FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns. J. Mater. Civ. Eng. 2008, 20, 169–188. [Google Scholar] [CrossRef]
- Chastre, C.; Silva, M.A.G. Monotonic axial behavior and modelling of RC circular columns confined with CFRP. Eng. Struct. 2010, 32, 2268–2277. [Google Scholar] [CrossRef]
- Suon, S.; Saleem, S.; Pimanmas, A. Compressive behavior of basalt FRP-confined circular and non-circular concrete specimens. Constr. Build. Mater. 2019, 195, 85–103. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A. Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Compos. Part B 2007, 38, 640–650. [Google Scholar] [CrossRef]
- Wang, Y.C.; Hsu, K. Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying capacity. Compos. Struct. 2008, 82, 132–139. [Google Scholar] [CrossRef]
- Tao, Z.; Yu, Q.; Zhong, Y.Z. Compressive behaviour of CFRP-confined rectangular concrete columns. Mag. Concr. Res. 2008, 60, 735–745. [Google Scholar] [CrossRef]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Axially loaded reinforced concrete columns with a square section partially confined by light GFRP straps. J. Compos. Constr. ASCE 2014, 19. [Google Scholar] [CrossRef]
- Eid, R.; Raultre, P. Compressive behavior of FRP-confined reinforced concrete columns. Eng. Struct. 2017, 132, 518–530. [Google Scholar] [CrossRef]
- Isleem, H.F.; Wang, Z.; Wang, D.; Smith, S.T. Monotonic and Cyclic Axial Compressive Behavior of CFRP-Confined Rectangular RC Columns. J. Compos. Constr. ASCE 2018, 22. [Google Scholar] [CrossRef]
- Zeng, J.J.; Lin, G.; Teng, J.G.; Li, L.J. Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Eng. Struct. 2018, 174, 629–645. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.-F. Axial Strength of Eccentrically Loaded FRP-Confined Short Concrete Column. Polymers 2020, 12, 1261. [Google Scholar] [CrossRef]
- Ilki, A.; Kumbasar, N. Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets. Struct. Eng. Mech. 2002, 13, 75–90. [Google Scholar] [CrossRef]
- Ilki, A.; Kumbasar, N. Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections. J. Earthq. Eng. 2003, 7, 381–406. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G.; Cheung, C.H.; Xiao, Y. FRP-confined concrete under axial cyclic compression. Cem. Concr. Compos. 2006, 28, 949–958. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, T.; Teng, J.G. Behavior of Concrete-Filled FRP Tubes under Cyclic Axial Compression. J. Compos. Constr. ASCE 2015, 19. [Google Scholar] [CrossRef] [Green Version]
- Ozbakkaloglu, T.; Akin, E. Behavior of FRP-confined normal-and high-strength concrete under cyclic axial compression. J. Compos. Constr. ASCE 2011, 16, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.L.; Dai, J.G.; Teng, J.G. Cyclic compressive behavior of concrete confined with large rupture strain FRP composites. J. Compos. Constr. ASCE 2014, 18. [Google Scholar] [CrossRef]
- Bai, Y.L.; Dai, J.G.; Teng, J.G. Buckling of steel reinforcing bars in FRP-confined RC columns: An experimental study. Constr. Build. Mater. 2017, 140, 403–415. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Karabinis, A.I.; Kiousis, P.D. FRP-confined concrete members: Axial compression experiments and plasticity modelling. Eng. Struct. 2007, 29, 1343–1353. [Google Scholar] [CrossRef]
- Abbasnia, R.; Ziaadiny, H. Behavior of concrete prisms confined with FRP composites under axial cyclic compression. Eng. Struct. 2010, 32, 648–655. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, D.Y.; Smith, S.T.; Lu, D.G. CFRP-confined square RC columns. I: Experimental investigation. J. Compos. Constr. 2012, 16, 150–160. [Google Scholar] [CrossRef]
- Abbasnia, R.; Ahmadi, R.; Ziaadiny, H. Effect of confinement level, aspect ratio and concrete strength on the cyclic stress-strain behavior of FRP-confined concrete prisms. Compos. Part B 2012, 43, 825–831. [Google Scholar] [CrossRef]
- Abbasnia, R.; Hosseinpour, F.; Rostamian, M.; Ziaadiny, H. Effect of corner radius on stress–strain behavior of FRP confined prisms under axial cyclic compression. Eng. Struct. 2012, 40, 529–535. [Google Scholar] [CrossRef]
- Abbasnia, R.; Hosseinpour, F.; Rostamian, M.; Ziaadiny, H. Cyclic and monotonic behavior of FRP confined concrete rectangular prisms with different aspect ratios. Constr. Build. Mater. 2013, 40, 118–125. [Google Scholar] [CrossRef]
- Hosseinpour, F.; Abbasnia, R. Experimental investigation of the stress-strain behavior of FRP confined concrete prisms. Adv. Concr. Constr. 2014, 2, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Hany, N.F.; Hantouche, E.G.; Harajli, M.H. Axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading. J. Compos. Constr. ASCE 2015, 19. [Google Scholar] [CrossRef]
- Dalgic, K.D.; Ispir, M.; Ilki, A. Cyclic and monotonic compression behavior of CFRP jacketed damaged noncircular concrete prisms. J. Compos. Constr. ASCE 2016, 20. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Panagiotakis, G.D.; Archontaki, E.E.; Kostopoulos, A.K. Prismatic RC columns externally confined with FRP sheets and pretensioned basalt fiber ropes under cyclic axial load. Compos. Part B 2018, 163, 96–106. [Google Scholar] [CrossRef]
- Saljoughian, A.; Mostofinejad, D. Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression. Constr. Build. Mater. 2020, 235. [Google Scholar] [CrossRef]
- Parvin, A.; Brighton, D. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions. Polymers 2014, 6, 1040–1056. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Design-oriented stress-strain model for FRP-confined concrete. Constr. Build. Mater. 2003, 17, 471–489. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Compos. 2003, 22, 1149–1186. [Google Scholar] [CrossRef]
- Wu, G.; Wu, Z.S.; Lü, Z.T. Design-oriented stress–strain model for concrete prisms confined with FRP composites. Constr. Build. Mater. 2007, 21, 1107–1121. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Wu, Y.F. Unified stress–strain model of concrete for FRP-confined columns. Constr. Build. Mater. 2012, 26, 381–392. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T. Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes. J. Compos. Constr. 2013, 17, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.M.; Hadi, M.N. Confinement model for FRP confined normal-and high-strength concrete circular columns. Constr. Build. Mater. 2014, 69, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.G.; Jiang, C.; Wu, Y.F. Cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer. Polymers 2016, 8, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Wu, Y.F.; Jiang, J.F. Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites. Compos. Struct. 2017, 168, 851–862. [Google Scholar] [CrossRef]
- Nistico, N.; Pallini, F.; Rousakis, T.; Wu, Y.F.; Karabinis, A. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections. Compos. Part B 2014, 67, 543–554. [Google Scholar] [CrossRef]
- Shao, Y.; Zhu, Z.; Mirmiran, A. Cyclic modeling of FRP-confined concrete with improved ductility. Cem. Concr. Compos. 2006, 28, 959–968. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Stress–strain model for FRP-confined concrete under cyclic axial compression. Eng. Struct. 2009, 31, 308–321. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.F. Stress-strain model of FRP confined concrete under cyclic loading. Compos. Struct. 2015, 134, 60–71. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.F.; Zhou, Y.; Xing, F. Cyclic stress-strain model for FRP-confined concrete considering post-peak softening. Compos. Struct. 2018, 201, 902–915. [Google Scholar] [CrossRef]
- Keshtegar, B.; Gholampour, A.; Ozbakkaloglu, T.; Zhu, S.-P.; Trung, N.-T. Reliability Analysis of FRP-Confined Concrete at Ultimate using Conjugate Search Direction Method. Polymers 2020, 12, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, T.; Teng, J.G.; Wong, Y.L.; Dong, S.L. Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model. Eng. Struct. 2010, 32, 665–679. [Google Scholar] [CrossRef]
- Yu, T.; Teng, J.G.; Wong, Y.L.; Dong, S.L. Finite element modeling of confined concrete-II: Plastic-damage model. Eng. Struct. 2010, 32, 680–691. [Google Scholar] [CrossRef]
- Teng, J.G.; Xiao, Q.G.; Yu, T.; Lam, L. Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement. Eng. Struct. 2015, 97, 15–28. [Google Scholar] [CrossRef]
- Rousakis, T.C. Mechanical Behaviour of Concrete Confined by Composite Materials. Ph.D. Thesis, Civil Engineering Department, Democritus University of Thrace, Xanthi, Greece, 2005. [Google Scholar]
- Rousakis, T.C.; Karabinis, A.I.; Kiousis, P.D.; Tepfers, R. Analytical modelling of plastic behaviour of uniformly FRP confined concrete members. Compos. Part B 2008, 39, 1104–1113. [Google Scholar] [CrossRef]
- Karabinis, A.I.; Rousakis, T.C.; Manolitsi, G.E. 3D Finite-Element Analysis of Substandard RC Columns Strengthened by Fiber-Reinforced Polymer Sheets. J. Compos. Constr. ASCE 2008, 12, 531–540. [Google Scholar] [CrossRef]
- Fanaradelli, T.; Rousakis, T.; Karabinis, A. Reinforced concrete columns of square and rectangular section, confined with FRP—Prediction of stress and strain at failure. Compos. Part B Eng. 2019, 174. [Google Scholar] [CrossRef]
- Fanaradelli, T.; Rousakis, T. Assessment of analytical stress and strain at peak and at ultimate conditions for fiber-reinforcement polymer-confined reinforced concrete columns of rectangular sections under axial cyclic loading. Struct. Concr. 2020, 1–14. [Google Scholar] [CrossRef]
- Eurocode 8. Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings; BSL: London, UK, 2005. [Google Scholar]
- FIB Bulletin 90. Externally Applied FRP Reinforcement for Concrete Structures, Federation International du Beton Technical Report Prepared by a Working Party of the T5.1 FRP Reinforcement for Concrete Structures; Federation Internationale du Beton: Lausanne, Switzerland, 2019; ISBN 9782883941311. [Google Scholar]
- Rousakis, T.C.; Saridaki, M.E.; Mavrothalassitou, S.A.; Hui, D. Utilization of hybrid approach towards advanced database of concrete beams strengthened in shear with FRPs. Compos. Part B 2016, 85, 315–335. [Google Scholar] [CrossRef]
- ANSYS®. Academic Research, Release 15.0; SAS IP, Inc.: Canonsburg, PA, USA, 2003. [Google Scholar]
- Riedel, W. Beton unter dynamischen Lasten: Meso- und Makromechanische Modelle und Ihre Parameter; Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut EMI: Freiburg im Breisgau, Germany, 2004; ISBN 3-8167-6340-5. [Google Scholar]
- Riedel, W.; Thoma, K.; Hiermaier, S.; Schmolinske, E. Penetration of Reinforced Concrete by BETA-B-500, Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes. In Proceedings of the (CD-ROM) 9. Internationales Symposium, Interaction of the Effects of Munitions with Structures, Berlin/Strausberg, Germany, 3–7 May 1999; pp. 315–322. [Google Scholar]
- Riedel, W.; Kawai, N.; Kondo, K. Numerical Assessment for Impact Strength Measurements in Concrete Materials. Int. J. Impact Eng. 2009, 36, 283–293. [Google Scholar] [CrossRef] [Green Version]
Specimen | h (mm) | b (mm) | H (mm) | rc (mm) | Long. | fy,long (MPa) | Stir. | fy,stir (MPa) | fco (MPa) | n | tFRP | EFRP (GPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BS1C1C [2] | 200 | 200 | 320 | 30 | 4Φ14 | 500 | Φ8/200 | 500 | 25.5 | 1 | 0.117 | 240 |
BS1C3C [2] | 200 | 200 | 320 | 30 | 4Φ14 | 500 | Φ8/200 | 500 | 25.5 | 3 | 0.117 | 240 |
BS1C5C [2] | 200 | 200 | 320 | 30 | 4Φ14 | 500 | Φ8/200 | 500 | 25.5 | 5 | 0.117 | 240 |
BS2C1C [2] | 200 | 200 | 320 | 30 | 4Φ14 | 500 | Φ8/95 | 500 | 25.5 | 1 | 0.117 | 240 |
BS2C3C [2] | 200 | 200 | 320 | 30 | 4Φ14 | 500 | Φ8/95 | 500 | 25.5 | 3 | 0.117 | 240 |
BS2C5C [2] | 200 | 200 | 320 | 30 | 4Φ14 | 500 | Φ8/95 | 500 | 25.5 | 5 | 0.117 | 240 |
LSR-R-1-3-10b [20] | 250 | 250 | 500 | 10 | 4Φ14 | 345 | Φ8/200 | 476 | 10.83 | 3 | 0.165 | 230 |
LSR-R-1-3-20b [20] | 250 | 250 | 500 | 20 | 4Φ14 | 345 | Φ8/200 | 476 | 10.83 | 3 | 0.165 | 230 |
LSR-R-1-3-40b [20] | 250 | 250 | 500 | 40 | 4Φ14 | 345 | Φ8/200 | 476 | 10.83 | 3 | 0.165 | 230 |
R2.0H2CL3 [28] | 400 | 200 | 1000 | 40 | 8Φ16 | 360 | Φ8/100 | 345 | 46.3 | 3 | 0.167 | 240 |
R2.0H2CL4 [28] | 400 | 200 | 1000 | 40 | 8Φ16 | 360 | Φ8/100 | 345 | 46.3 | 4 | 0.167 | 240 |
Specimen | fco,FE (MPa) | fy,long,FE (MPa) | fy,long,FE (MPa) | EFRP,gt,FE 1 (MPa) | EFRP,ga,FE 2 (MPa)* | tFRP,FE | Poisson Ratio FE | Shear Modulus FE (MPa) | εFRP,FE |
---|---|---|---|---|---|---|---|---|---|
BS1C1C [2] | 25.5 | 600 | 600 | 59,160 | 7500 | 0.475 | 0.3 | 17,500 | 0.015 |
BS1C3C [2] | 25.5 | 600 | 600 | 59,160 | 7500 | 1.424 | 0.3 | 17,500 | 0.015 |
BS1C5C [2] | 25.5 | 600 | 600 | 59,160 | 7500 | 2.373 | 0.3 | 17,500 | 0.015 |
BS2C1C [2] | 25.5 | 600 | 600 | 59,160 | 7500 | 0.475 | 0.3 | 17,500 | 0.015 |
BS2C3C [2] | 25.5 | 600 | 600 | 59,160 | 7500 | 1.424 | 0.3 | 17,500 | 0.015 |
BS2C5C [2] | 25.5 | 600 | 600 | 59,160 | 7500 | 2.373 | 0.3 | 17,500 | 0.015 |
LSR-R-1-3-10b [20] | 10.83 | 345 | 476 | 59,160 | 7500 | 1.924 | 0.3 | 17,500 | 0.015 |
LSR-R-1-3-20b [20] | 10.83 | 345 | 476 | 59,160 | 7500 | 1.924 | 0.3 | 17,500 | 0.015 |
LSR-R-1-3-40b [20] | 10.83 | 345 | 476 | 59,160 | 7500 | 1.924 | 0.3 | 17,500 | 0.015 |
R2.0H2CL3 [28] | 46.3 | 360 | 345 | 59,160 | 7500 | 2.032 | 0.3 | 17,500 | 0.015 |
R2.0H2CL4 [28] | 46.3 | 360 | 345 | 59,160 | 7500 | 2.710 | 0.3 | 17,500 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanaradelli, T.D.; Rousakis, T.C. 3D Finite Element Pseudodynamic Analysis of Deficient RC Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression. Polymers 2020, 12, 2546. https://doi.org/10.3390/polym12112546
Fanaradelli TD, Rousakis TC. 3D Finite Element Pseudodynamic Analysis of Deficient RC Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression. Polymers. 2020; 12(11):2546. https://doi.org/10.3390/polym12112546
Chicago/Turabian StyleFanaradelli, Theodora D., and Theodoros C. Rousakis. 2020. "3D Finite Element Pseudodynamic Analysis of Deficient RC Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression" Polymers 12, no. 11: 2546. https://doi.org/10.3390/polym12112546
APA StyleFanaradelli, T. D., & Rousakis, T. C. (2020). 3D Finite Element Pseudodynamic Analysis of Deficient RC Rectangular Columns Confined with Fiber Reinforced Polymers under Axial Compression. Polymers, 12(11), 2546. https://doi.org/10.3390/polym12112546