Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of the Nature of Polymers on the Average Hydrodynamic Size of AuNPs
3.2. Influence of the Concentration and Molecular Mass of PVP on the Size of AuNPs
3.3. FTIR and Raman Spectra of AuNPs Stabilized Using Synthetic and Natural Polymers
3.4. Influence of the Concentration of Polysaccharides on the Size of AuNPs
3.5. Influence of Temperature on the Size of AuNPs
3.6. Storage Stability of AuNPs
3.7. Characterization of AuNRs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ibrayeva, Z.E.; Kudaibergenov, S.E.; Bekturov, E.A. Stabilization of Metal Nanoparticles by Hydrophilic Polymers; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2013; p. 376. [Google Scholar]
- Shan, J.; Tenhu, H. Recent advances in polymer protected gold nanoparticles: Synthesis, properties and applications (Review). Chem. Commun. 2007, 44, 4580–4598. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.; Agrawal, L.; Mishra, A.; Roy, S.K. Synthesis and optical properties of surface stabilized gold nanoparticles with poly(N-vinylpyrrolidone). Polymer molecules of a nanofluid. Adv. Sci. Lett. 2011, 4, 3431–3438. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Zharmagambetova, A.K.; Kudaibergenov, S.E.; Uflyand, I.E. Polymer-immobilized clusters and metal nanoparticles in catalysis. Kinet. Catal. 2020, 61, 198–223. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Xu, S.; Tatykhanova, G.S. Gellan gum immobilized anticancer drugs and gold nanoparticles in nanomedicine. Academ. J. Polym. Sci. 2019, 2, 555–588. [Google Scholar] [CrossRef]
- Menon, S.; Rajeshkumar, S.; Venkat Kumar, S. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour. Effic. Technol. 2017, 3, 516–527. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Shrivastav, A.; Shrivastav, B.R. Biogenic gold nanoparticles: As a potential candidate for brain tumor directed drug delivery. Artif. Cell. Nanomed. B 2014, 1–7. [Google Scholar] [CrossRef]
- Dykman, L.; Khlebtsov, N. Gold in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef]
- Mahato, K.; Nagpal, S.; Shah, M.A.; Srivastava, A.; Maurya, P.K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. Biotech 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Mou, L.; Jiang, X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 2020, 11, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Sengania, M.; Grumezescub, A.M.; Rajeswaria, V.D. Recent trends and methodologies in gold nanoparticle synthesis. A prospective review on drug delivery aspect. Open Nano 2017, 2, 37–46. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Ibrayeva, Z.E.; Baigaziyeva, E.; Yesmurzayeva, N.; Tatykhanova, G.; Yashkarova, M.; Kudaibergenov, S.E. Poly(N-vinylpyrrolidone) protected gold and silver nanoparticles: Synthesis, characterization and catalytic properties. Macromol. Symp. 2015, 351, 51–60. [Google Scholar] [CrossRef]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Reddy, E.M.; Pokharkar, V.; Shiras, A.; Prasad, B.L.V. Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem. Eur. J. 2008, 14, 10244–10250. [Google Scholar] [CrossRef] [PubMed]
- Mackey, M.A.; Ali, M.; Austin, L.A.; Near, R.D.; El-Sayed, M.A. The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vivo experiments. J. Phys. Chem. B 2014, 118, 1319–1326. [Google Scholar] [CrossRef]
- Huang, X.; Neretina, S.; El-Sayed, M.A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910. [Google Scholar] [CrossRef]
- Huang, X.H.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef]
- Huang, X.H.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2007, 2, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.Q.; Gao, Z. Plasmonic nanoparticles in biomedicine. Nano Today 2016, 11, 168–188. [Google Scholar] [CrossRef]
- Bhirde, A.A.; Hassan, S.A.; Harr, E.; Chen, X. Role of albumin in the formation and stabilization of nanoparticle aggregates in serum studied by continuous photon correlation spectroscopy and multiscale computer simulations. J. Phys. Chem. 2014, 118, 16199–16208. [Google Scholar] [CrossRef] [Green Version]
- Matei, I.; Buta, C.M.; Turcu, I.M.; Culita, D.; Munteanu, C.; Ionita, G. Formation and stabilization of gold nanoparticles in bovine serum albumin solution. Molecules 2019, 24, 3395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thilagam, R.; Gnanamani, A. Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. Appl. Nanosci. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z.; Wang, L.; Guo, C.; Sun, Y. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 2007, 23, 10533–10538. [Google Scholar] [CrossRef] [PubMed]
- Tebbe, M.; Kuttner, C.; Mannel, M.; Fery, A.; Chanana, M. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media. ACS Appl. Mater. Interfaces 2015, 7, 5984–5991. [Google Scholar] [CrossRef] [PubMed]
- Housni, A.; Ahmed, M.; Liu, S.; Narain, R. Monodisperse protein stabilized gold nanoparticles via a simple photochemical process. J. Phys. Chem. C 2008, 112, 12282–12290. [Google Scholar] [CrossRef]
- Hepel, M.; Stobiecka, M. Detection of oxidative stress biomarkers using functional gold nanoparticles. In Fine Particles in Medicine and Pharmacy; Matijevic, E., Ed.; Springer: Boston, MA, USA, 2012; pp. 241–281. [Google Scholar]
- Stobiecka, M.; Hepel, M. Double-shell gold nanoparticle-based DNA-carriers with poly-l-lysine binding surface. Biomaterials 2011, 32, 3312–3321. [Google Scholar] [CrossRef]
- Grel, H.; Ratajczak, K.; Jakiela, S.; Stobiecka, M. Gated resonance energy transfer (gRET) controlled by programmed death protein ligand 1. Nanomaterials 2020, 10, 1592. [Google Scholar] [CrossRef]
- Banerjee, A.; Halder, U.; Bandopadhyay, R. Preparations and applications of polysaccharide based green synthesized metal nanoparticles: A state-of-the-art. J. Clust. Sci. 2017, 28, 1803–1813. [Google Scholar] [CrossRef]
- Dolya, N.; Rojas, O.; Kosmella, S.; Tiersch, B.; Koetz, J.; Kudaibergenov, S. “One-pot” in situ formation of gold nanoparticles within poly (acrylamide) hydrogels. Macromol. Chem. Phys. 2013, 214, 1114–1121. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Chunbai, H.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and bio distribution of polymeric nanoparticles. Biol. Mater. 2010, 13, 3657–3666. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [Google Scholar] [CrossRef]
- Su, K.H.; Wei, Q.H.; Zhang, X.; Mock, J.J.; Smith, D.R.; Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3, 1087–1090. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-sized-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Shenhar, R.; Norsten, T.B.; Rotello, V.M. Polymer-mediated nanoparticle assembly: Structural control and applications. Adv. Mater. 2005, 17, 657–669. [Google Scholar] [CrossRef]
- Nemela, E.; Desai, D.; Nkizinkiko, Y.; Eriksson, J.E.; Rosenholm, J.M. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. Eur. Pharm. Biopharm. 2015, 96, 11–21. [Google Scholar] [CrossRef]
- Behera, M.; Ram, S. Spectroscopy-based study on the interaction between gold nanoparticle and poly (vinylpyrrolidone) molecules in a non-hydrocolloid. Int. Nano Lett. 2013, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, C.E.; Lazzari, M.; Pardinas-Blanco, I.; Lopez-Quintela, M.A. One-step synthesis of gold and silver hydrosols using poly (N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 2006, 22, 7027–7034. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, C.; Freese, A.K.; Rodriguez-Mendez, M.L.; Wanekaya, A.K. In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications. Biomater. Sci. 2019, 7, 2511–2519. [Google Scholar] [CrossRef] [PubMed]
- Milas, M.; Rinaudo, M. The gellan sol-gel transition. Carbohydr. Polym. 1996, 30, 177–184. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Tatykhanova, G.S.; Sigitov, V.B.; Nurakhmetova, Z.A.; Blagikh, E.V.; Gussenov, I.S.; Seilkhanov, T.M. Physico-chemical and rheological properties of gellan in aqueous-salt solutions and oilfield saline water. Macromol. Symp. 2016, 363, 20–35. [Google Scholar] [CrossRef]
Type of Polymers | Concentration, wt % | Range of Average Diameter, nm | ζ-Potential, mV |
---|---|---|---|
PVP 10 kDa | 4.0 | 4–8 (±1) | −33.0 (±1) |
PVP 40 kDa | 4.0 | 6–9 (±1) | −28.1 (±1) |
Gellan | 0.5 | 16 (±2) | −28.5 (±1) |
Pectin | 0.2 | 11–29 (±2) | −40.3 (±1) |
κ-Carrageenan | 0.5 | 6–11 (±2) | −41.9 (±1) |
C, wt % | Average Hydrodynamic Size, nm | |
---|---|---|
PVP 10 kDa | PVP 40 kDa | |
0.05 | - | 38 (±3) |
1.0 | 7 (±1) | 10 (±1) |
4.0 | 4 (±1) | 8 (±1) |
C, wt % | Average Hydrodynamic Size, nm | |||
---|---|---|---|---|
Gellan | Welan | Pectin | κ-Carrageenan | |
0.05 | 8 (±1) | - | 9 (±2) | 11 (±2) |
0.2 | - | 18 (±2) | 23 (±2) | 15 (±3) |
0.5 | 16 (±2) | 30 (±3) | 75 (±5) | 19 (±3) |
1.0 | 24 (±3) | 42 (±4) | 123 (±6) | 18 (±3) |
No. | Polymers, Concentration, wt % | Average Hydrodynamic Size of AuNPs, nm | |||||
---|---|---|---|---|---|---|---|
Temperature, °C | |||||||
25 | 35 | 45 | 55 | 65 | 75 | ||
1 | Gellan, 0.5 | 16 (±2) | 18 (±2) | 11 (±2) | 5 (±1) | 4 (±1) | 3 (±1) |
2 | κ-Carrageenan, 0.5 | 19 (±2) | 19 (±2) | 26 (±3) | 28 (±3) | 15 (±2) | 11 (±2) |
3 | PVP 10 kDa, 4.0 | 2 (±1) | 4 (±1) | 5 (±1) | 5 (±1) | 5 (±1) | 6 (±1) |
4 | PVP 40 kDa, 4.0 | 6 (±1) | 4 (±1) | 6 (±1) | 5 (±1) | 3 (±1) | 6 (±1) |
Days | 1 | 5 | 9 | 21 | 36 |
---|---|---|---|---|---|
Diameter, nm | 7–9 (±1) | 7–11 (±1) | 7–10 (±1) | 5–26 (±2) | 6–9 (±1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurakhmetova, Z.A.; Azhkeyeva, A.N.; Klassen, I.A.; Tatykhanova, G.S. Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers 2020, 12, 2625. https://doi.org/10.3390/polym12112625
Nurakhmetova ZA, Azhkeyeva AN, Klassen IA, Tatykhanova GS. Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers. 2020; 12(11):2625. https://doi.org/10.3390/polym12112625
Chicago/Turabian StyleNurakhmetova, Zhanara A., Aiganym N. Azhkeyeva, Ivan A. Klassen, and Gulnur S. Tatykhanova. 2020. "Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers" Polymers 12, no. 11: 2625. https://doi.org/10.3390/polym12112625
APA StyleNurakhmetova, Z. A., Azhkeyeva, A. N., Klassen, I. A., & Tatykhanova, G. S. (2020). Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers, 12(11), 2625. https://doi.org/10.3390/polym12112625