Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Physico-Chemical Characterzization
2.4. In Vitro Cell Assays
2.4.1. Cell Cytotoxicity Assay
2.4.2. Cell Adhesion Assay
2.5. Bacterial Strains and Culture Conditions
2.5.1. Bacterial Adhesion onto Functionalized Samples
2.5.2. Viability of Bacteria onto Modified Samples
2.6. Statistical Analysis
3. Results
3.1. Physico-Chemical Characterization
3.2. Cell Cytotoxicity Assay
3.3. Bacterial Adhesion onto Functionalized Samples
3.4. Viability of Bacteria onto Modified Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar]
- Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinemann, S.G. Titanium–the material of choice? Periodontol. 2000 1998, 17, 7–21. [Google Scholar] [CrossRef] [PubMed]
- French, D.; Grandin, H.M.; Ofec, R. Retrospective cohort study of 4,591 dental implants: Analysis of risk indicators for bone loss and prevalence of peri-implant mucositis and peri-implantitis. J. Periodontol. 2019, 90, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira-Neto, O.B.; Lemos, C.A.A.; Barbosa, F.T.; De Sousa-Rodrigues, C.F.; Camello De Lima, F.J. Immediate dental implants placed into infected sites present a higher risk of failure than immediate dental implants placed into non-infected sites: Systematic review and meta-analysis. Med. Oral Patol. Oral y Cir. Bucal 2019, 24, e518–e528. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; van der Mei, H.C.; Ren, Y.; Busscher, H.J. Keratinocytes protect soft-tissue integration of dental implant materials against bacterial challenges in a 3D-tissue infection model. Acta Biomater. 2019, 96, 237–246. [Google Scholar] [CrossRef]
- Schaumann, S.; Staufenbiel, I.; Scherer, R.; Schilhabel, M.; Winkel, A.; Stumpp, S.; Eberhard, J.; Stiesch, M. Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites.No Title. BMC Oral Health 2014, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Lindhe, J.; Meyle, J. Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodontol 2008, 35, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Zitzmann, N.U.; Berglundh, T. Definition and prevalence of peri-implant diseases. J. Clin. Periodontol. 2008, 35, 286–291. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A. Peri-implant diseases: Diagnosis and risk indicators. J. Clin. Periodontol. 2008, 35, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Donelli, G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 2010, 59, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surapaneni, H.; Yalamanchili, P.S.; Basha, M.H.; Potluri, S.; Elisetti, N.; Kiran Kumar, M.V.K. Antibiotics in dental implants: A review of literature. J. Pharm. Bioallied Sci. 2016, 8, S28–S31. [Google Scholar] [PubMed]
- Romandini, M.; De Tullio, I.; Congedi, F.; Kalemaj, Z.; D’Ambrosio, M.; Laforí, A.; Quaranta, C.; Buti, J.; Perfetti, G. Antibiotic prophylaxis at dental implant placement: Which is the best protocol? A systematic review and network meta-analysis. J. Clin. Periodontol. 2019, 46, 382–395. [Google Scholar] [CrossRef]
- Lindsay, D.; von Holy, A. Bacterial biofilms within the clinical setting: What healthcare professionals should know. J. Hosp. Infect. 2006, 64, 313–325. [Google Scholar] [CrossRef]
- Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol. 2005, 13, 34–40. [Google Scholar] [CrossRef]
- Sabri, N.A.; Schmitt, H.; Van der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [Google Scholar] [CrossRef]
- Gao, P.; Munir, M.; Xagoraraki, I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci. Total Environ. 2012, 421–422, 173–183. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2016, 1–16. [Google Scholar]
- Ferraris, S.; Spriano, S. Antibacterial titanium surfaces for medical implants. Mater. Sci. Eng. C 2016, 61, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Al Mugeiren, O.M.; Baseer, M.A. Dental Implant Bioactive Surface Modifiers: An Update. J. Int. Soc. Prev. Community Dent. 2019, 9, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, S.; Wu, J.; Zou, X.; Sieggreen, O.; Liu, Y.; Xi, C.; Brooks, C.L.; Chen, Z. Interfacial Behaviors of Antimicrobial Peptide Cecropin P1 Immobilized on Different Self-Assembled Monolayers. J. Phys. Chem. C 2015, 119, 22542–22551. [Google Scholar] [CrossRef]
- He, S.; Zhou, P.; Wang, L.; Xiong, X.; Zhang, Y.; Deng, Y.; Wei, S. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J. R. Soc. Interface 2014, 11, 20140169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakir, M.; Ashraf, U.; Tian, T.; Han, A.; Qiao, W.; Jin, X.; Zhang, M.; Tsoi, J.K.-H.; Matinlinna, J.P. The Role of Silane Coupling Agents and Universal Primers in Durable Adhesion to Dental Restorative Materials-a Review. Curr. Oral Heal. Reports 2016, 3, 244–253. [Google Scholar] [CrossRef]
- Chng, E.J.; Watson, A.B.; Suresh, V.; Fujiwara, T.; Bumgardner, J.D.; Gopalakrishnan, R. Adhesion of electrosprayed chitosan coatings using silane surface chemistry. Thin Solid Films 2019, 692, 137454. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Hon, A.K.; Matinlinna, J.P.; Shibata, Y.; Miyazaki, T.; Pow, E.H.N. Evaluation of five silane coupling agents on resin-titanium adhesion. Int. J. Adhes. Adhes. 2019, 90, 132–137. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Guillem-Marti, J.; Sevilla, P.; Manero, J.M.; Gil, F.J.; Rodriguez, D. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Mater. Sci. Eng. C 2016, 59, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Vilarrasa, J.; Delgado, L.M.; Galofré, M.; Àlvarez, G.; Violant, D.; Manero, J.M.; Blanc, V.; Gil, F.J.; Nart, J. In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces. J. Mater. Sci. Mater. Med. 2018, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef] [Green Version]
- Chrcanovic, B.; Albrektsson, T.; Wennerberg, A. Periodontally compromised vs. periodontally healthy patients and dental implants: A systematic review and meta-analysis. J. Dent. 2014, 42, 1509–1527. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A.; Décaillet, F. The characteristics of biofilms in peri-implant disease. J. Clin. Periodontol. 2011, 38 (Suppl. 1), 203–213. [Google Scholar] [CrossRef] [Green Version]
- Mombelli, A.; Muller, N.; Cionca, N. The epidemiology of periimplantitis. Clin. Oral Implants Res. 2012, 23, 67–76. [Google Scholar] [CrossRef]
- Arkles, B.; Pan, Y.; Kim, Y.M. The Role of polarity in the Structure of Silanes Employed in Surface Modification. Silanes Other Coupling Agents 2009, 5, 51–64. [Google Scholar]
- Hoyos-Nogués, M.; Buxadera-Palomero, J.; Ginebra, M.-P.; Manero, J.M.; Gil, F.J.; Mas-Moruno, C. All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids Surfaces B Biointerfaces 2018, 169, 30–40. [Google Scholar] [CrossRef]
- Buxadera-Palomero, J.; Calvo, C.; Torrent-Camarero, S.; Gil, F.J.; Mas-Moruno, C.; Canal, C.; Rodríguez, D. Biofunctional polyethylene glycol coatings on titanium: An in vitro-based comparison of functionalization methods. Colloids Surf. B Biointerfaces 2017, 152, 367–375. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Mas-Moruno, C.; Yu, K.; Manero, J.M.; Gil, J.; Kizhakkedathu, J.N.; Rodriguez, D. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: A comparison study between silanization and surface initiated polymerization. Biomacromolecules 2015, 16, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Gallardo, M.; Manzanares-Céspedes, M.C.; Sevilla, P.; Nart, J.; Manzanares, N.; Manero, J.M.; Gil, F.J.; Boyd, S.K.; Rodríguez, D. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs. Mater. Sci. Eng. C 2016, 69, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Mustafa, M.; Agis, H.; Müller, H.-D.; Watzek, G.; Gruber, R. In vitro adhesion of fibroblastic cells to titanium alloy discs treated with sodium hydroxide. Clin. Oral Implants Res. 2015, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Yamaguchi, S. Simulated body fluid and the novel bioactive materials derived from it. J. Biomed. Mater. Res. Part A 2019, 107, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Nath, S.; Sugawara, Y.; Divakarla, K.; Das, T.; Manos, J.; Chrzanowski, W.; Matsushita, T.; Kokubo, T. Two-in-one biointerfaces—Antimicrobial and bioactive nanoporous gallium titanate layers for titanium implants. Nanomaterials 2017, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Yamaguchi, S. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys. Acta Biomater. 2016, 44, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Dantas, L.C.D.M.; da Silva-Neto, J.P.; Dantas, T.S.; Naves, L.Z.; Das Neves, F.D.; Da Mota, A.S. Bacterial adhesion and surface roughness for different clinical techniques for acrylic polymethyl methacrylate. Int. J. Dent. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Braem, A.; Van Mellaert, L.; Mattheys, T.; Hofmans, D.; De Waelheyns, E.; Geris, L.; Anné, J.; Schrooten, J.; Vleugels, J. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J. Biomed. Mater. Res. Part A 2014, 102, 215–224. [Google Scholar] [CrossRef]
- Civantos, A.; Martínez-Campos, E.; Ramos, V.; Elvira, C.; Gallardo, A.; Abarrategi, A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater. Sci. Eng. 2017, 3, 1245–1261. [Google Scholar] [CrossRef]
- Tyowua, A.T.; Targema, M.; Ubuo, E.E. Non-wettable surfaces–From natural to artificial and applications: A critical review. Rev. Adhes. Adhes. 2019, 7, 195–231. [Google Scholar] [CrossRef]
- Santhosh Kumar, S.; Hiremath, S.S.; Ramachandran, B.; Muthuvijayan, V. Effect of Surface Finish on Wettability and Bacterial Adhesion of Micromachined Biomaterials. Biotribology 2019, 18, 100095. [Google Scholar] [CrossRef]
- Toffoli, A.; Parisi, L.; Bianchi, M.G.; Lumetti, S.; Bussolati, O.; Macaluso, G.M. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. Mater. Sci. Eng. C 2020, 107, 110250. [Google Scholar] [CrossRef] [PubMed]
- Pegueroles, M.; Gil, F.-J.; Planell, J.A.; Aparicio, C. The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces. Surf. Coatings Technol. 2008, 202, 3470–3479. [Google Scholar] [CrossRef]
- Howarter, J.A.; Youngblood, J.P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22, 11142–11147. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization ISO 10993-5. Biological Evaluation of Medical Devices-Part 5: Tests for in Vitro Cytotoxicity; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Yu, X.L.; Chan, Y.; Zhuang, L.; Lai, H.C.; Lang, N.P.; Keung Leung, W.; Watt, R.M. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. Clin. Oral Implants Res. 2019, 30, 760–776. [Google Scholar] [CrossRef] [PubMed]
- Mayanagi, G.; Sato, T.; Shimauchi, H.; Takahashi, N. Microflora profiling of subgingival and supragingival plaque of healthy and periodontitis subjects by nested PCR. Int. Congr. Ser. 2005, 1284, 195–196. [Google Scholar] [CrossRef]
- Pham, L.C.; van Spanning, R.J.M.; Röling, W.F.M.; Prosperi, A.C.; Terefework, Z.; Ten Cate, J.M.; Crielaard, W.; Zaura, E. Effects of probiotic Lactobacillus salivarius W24 on the compositional stability of oral microbial communities. Arch. Oral Biol. 2009, 54, 132–137. [Google Scholar] [CrossRef]
Sample | CA (°) | SFE (mJ m−2) | DISP (mJ m−2) | POL (mJ m−2) |
---|---|---|---|---|
Ti | 67.9 ± 3.7 | 45.5 ± 1.9 | 40.4 ± 3.2 | 8.7 ± 1.5 |
Ti–N-TSP | 38.7 ± 5.1* | 78.1 ± 4.1* | 48.6 ± 1.7* | 22.9 ± 2.1* |
Sample | C 1s | O 1s | Si 2p | Ti 2p |
---|---|---|---|---|
Ti–N–TSP | 69.1 ± 2.1 | 25.2 ± 1.5 | 4.9 ±1.0 | 0.8 ± 0.1 |
Immersion 1 day | 66.5 ± 3.1 | 26.9 ± 2.3 | 5.7 ± 0.9 | 0.9 ± 0.2 |
Immersion 4 days | 64.7 ± 2.3 | 27.2 ± 2.5 | 6.9 ± 1.2 | 1.2 ± 0.4 |
Sample | S. Sanguinis | L. Salivarius | Oral Plaque |
---|---|---|---|
Ti | 150 ± 21* | 1198 ± 120* | 1850 ± 78* |
Ti–N–TSP | 12 ± 7 | 450 ± 33 | 591 ± 22 |
Strain | Sample | 1 Week | 2 Weeks | 4 Weeks |
---|---|---|---|---|
S. sanguinis | Ti | 32.0 × 104 ± 2.1 × 104 | 35.8 × 104 ± 1.9 × 104 | 42.0 × 104 ± 2.3 × 104 |
Ti–N–TSP | 1.2 × 104 ± 4 × 103 | 2.1 × 104 ± 7 × 103 | 1.9 × 104 ± 3 × 103 | |
L. salivarius | Ti | 12.5 × 104 ± 1.1 × 104 | 22.7 × 104 ± 1.9 × 104 | 32.0 × 104 ± 2.3 × 104 |
Ti–N–TSP | 8 × 103 ± 1 × 103 | 2.3 × 104 ± 5 × 103 | 1.9 × 104 ± 3 × 103 | |
Oral plaque | Ti | 31.0 × 104 ± 2.1 × 104 | 33.6 × 104 ± 1.5 × 104 | 39.0 × 104 ± 2.0 × 104 |
Ti–N–TSP | 1.8 × 104 ± 3 × 103 | 2.9 × 104 ± 6 × 103 | 2.7 × 104 ± 4 × 103 |
Incubation Time | Sample | S. sanguinis | L. salivarius | Oral Plaque |
---|---|---|---|---|
1 week | Ti | 0.001 ± 0.00 | 0.003 ± 0.001 | 0.001 ± 0.00 |
Ti–N–TSP | 0.17 ± 0.07 | 0.19 ± 0.08 | 0.19 ± 0.08 | |
2 weeks | Ti | 0.002 ± 0.001 | 0.04 ± 0.04 | 0.002 ± 0.002 |
Ti–N–TSP | 0.16 ± 0.05 | 0.26 ± 0.08 | 0.35 ± 0.06 | |
4 weeks | Ti | 0.05 ± 0.05 | 0.03 ± 0.04 | 0.03 ± 0.03 |
Ti–N–TSP | 0.39 ± 0.05 | 0.47 ± 0.20 | 0.58 ± 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buxadera-Palomero, J.; Godoy-Gallardo, M.; Molmeneu, M.; Punset, M.; Gil, F.J. Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants. Polymers 2020, 12, 773. https://doi.org/10.3390/polym12040773
Buxadera-Palomero J, Godoy-Gallardo M, Molmeneu M, Punset M, Gil FJ. Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants. Polymers. 2020; 12(4):773. https://doi.org/10.3390/polym12040773
Chicago/Turabian StyleBuxadera-Palomero, Judit, Maria Godoy-Gallardo, Meritxell Molmeneu, Miquel Punset, and Francisco Javier Gil. 2020. "Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants" Polymers 12, no. 4: 773. https://doi.org/10.3390/polym12040773
APA StyleBuxadera-Palomero, J., Godoy-Gallardo, M., Molmeneu, M., Punset, M., & Gil, F. J. (2020). Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants. Polymers, 12(4), 773. https://doi.org/10.3390/polym12040773