Abrasion Wear Resistance of Polymer Constructional Materials for Rapid Prototyping and Tool-Making Industry
Abstract
:1. Introduction
- The state of the metal atoms in the surface layers, which is different from the state of the atoms in the bulk of the material. The presence of free surface energy and high adsorption activity is a consequence;
- The sum of mechanical, thermal and physicochemical effects on the metal surface during the final and preliminary processing operations;
- The sum of repeated cyclic, mechanical, thermal and physicochemical effects on the metal surface in case of friction load in operation.
- The combination of material properties and the type (state) of contact surfaces (surface cleanliness, lubrication);
- The nature of the movement (sliding, rolling, bumps, fluidity);
- The speed of mutual movement;
- The load level;
- The removal of particles that separate or the presence of particles of some other material that complicates friction, etc.
2. Modeling Polymer Constructional Material Wear
3. Experimental Research Parameters of the Sub-Microrelief
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tuttle, M.E. Structural Analysis of Polymeric Composite Materials; Chapman and Hall/CRC: London, UK, 2019. [Google Scholar]
- Chung, D.D.L. Composite Materials: Science and Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Mangino, E.; Carruthers, J.; Pitarresi, G. The Future Use of Structural Composite Materials in the Automotive Industry. Int. J. Veh. Des. 2007, 44, 211–232. [Google Scholar] [CrossRef] [Green Version]
- Vollrath, F.; Porter, D. Silks as Ancient Models for Modern Polymers. Polymer 2009, 50, 5623–5632. [Google Scholar] [CrossRef] [Green Version]
- Horiashchenko, S.; Horiashchenko, K.; Musiał, J. Methodology of measuring spraying the droplet flow of polymers from nozzle. Mechanika 2020, 26, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Zakalov, O.V. Fundamentals of Friction and Wear in Machines; TNTU Publishing House: Ternopil, Ukraine, 2011; p. 322. [Google Scholar]
- Muhandes, H.; Kalacska, G.; Kadi, N.; Skrifvars, M. Pin-on-Plate Abrasive Wear Test for Sevel Composite Materials. Proceedings 2018, 2, 469. [Google Scholar] [CrossRef] [Green Version]
- Zsidai, L.; Katai, L. Abrasive Wear and Abrasion Testing of PA 6 and PEEK Composite in Small-Scale Model System. Acta Polytech. Hung. 2016, 13, 197–214. [Google Scholar]
- Burris, D.L.; Sawyer, G. A low friction and ultra low wear rate PEEK/PTFE composite. Wear 2006, 261, 410–418. [Google Scholar] [CrossRef]
- Sudeepan, J.; Kumar, K.; Barman, T.K.; Sahoo, P. Study of friction and wear of ABS/Zno polymer composite using Taguchi technique. Procedia Mater. Sci. 2014, 6, 391–400. [Google Scholar] [CrossRef]
- Sudeepan, J.; Kumar, K.; Barman, T.K.; Sahoo, P. Study of friction and wear properties of ABS/Kaolin polymer composite using grey relational technique. Procedia Technol. 2014, 14, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Myshkin, N.K.; Petrokovets, M.I.; Kovalev, A.V. Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribol. Int. 2005, 38, 910–921. [Google Scholar] [CrossRef]
- Greco, A.C.; Erck, R.; Ajayi, O.; Fenske, G. Effect of reinforcement morphology on high-speed sliding friction and wear of PEEK polymers. Wear 2011, 271, 2222–2229. [Google Scholar] [CrossRef]
- Samyn, P.; Schoukens, G. Experimental extrapolation model for friction and wear of polymers different testing scales. Int. J. Mech. Sci. 2008, 50, 1390–1403. [Google Scholar] [CrossRef]
- Agrawal, S.; Singh, K.K.; Sarkar, P.K. Comparative investigation on the wear and friction behaviors of carbon fiber reinforced polymer composites under dry sliding, oil lubrication and inert gas environment. Mater. Today Proc. 2018, 5, 1250–1256. [Google Scholar] [CrossRef]
- Yousif, B.F.; Nirmal, U. Wear and frictional performance of polymeric composites aged in various solutions. Wear 2011, 272, 97–104. [Google Scholar] [CrossRef]
- Katiyar, J.K.; Sinha, S.K.; Kumar, A. Friction an wear durability study of epoxy-base polymer (SU-8) composite coatings with talc and graphite as fillers. Wear 2016, 362–363, 199–208. [Google Scholar] [CrossRef]
- Voyer, J.; Jiang, Y.; Pakkanen, T.A.; Diem, A. Adhesive friction and wear of micro-pillared polymers in dry contact. Polym. Test. 2019, 73, 258–267. [Google Scholar] [CrossRef]
- Karuppiah, K.S.K.; Bruck, A.L.; Sundararajan, S.; Wang, J.; Lin, Z.; Xu, Z.; Li, X. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater. 2008, 4, 1401–1410. [Google Scholar] [CrossRef]
- Iyer, S.B.; Dube, A.; Dube, N.M.; Roy, P.; Sailaja, R.R.N. Sliding wear and friction characteristics of polymer nanocomposite PAEK-PDMS with nano-hydroxyapatite and nano carbon fibres as fillers. J. Mech. Behav. Biomed. Mater. 2018, 86, 23032. [Google Scholar] [CrossRef]
- Yadav, P.S.; Purohit, R.; Kothari, A. Study of friction and wear behavior of epoxy/nano SiO2 based polymer matrix composites—A review. Mater. Today Proc. 2019, 18, 5530–5539. [Google Scholar] [CrossRef]
- Wang, Q.; Xianqiang, P. Chapter 4—The influence of nanoparticle fillers on friction and wear behavior of polymer martices. In Tribology of Polymeric Nanocomposities; Elsevier: Amsterdam, The Netherlands, 2013; pp. 91–118. [Google Scholar]
- Lakshminarayana, R.T. Tribological Performance of Different Crankshaft Bearings in Conjunction with Textured Shaft Surfaces. Master’s Thesis, Luleå University of Technology, Department of Engineering Sciences and Mathematics, Luleå, Sweden, 2017. [Google Scholar]
- Sorokatiy, R.V. Scientific Bases and Implementation of the Method of Calculation of Wear of Friction Units by the Method of Triboelements. Ph.D. Thesis, Khmelnytskyi National University, Khmelnitsky, Ukraine, 2009. [Google Scholar]
- Musiał, J.; Polasik, R.; Kałaczyński, T.; Szczutkowski, M.; Łukasiewicz, M. Milling efficiency aspects during machining of 7075 aluminium alloy with reference to the surface geometrical structure. In Proceedings of the 24th International Conference Engineering Mechanics, Svratka, Czech Republic, 14–17 May 2018; pp. 569–572. [Google Scholar]
- Musiał, J. The Importance of Surface Topography in the Transformation of the Cylindrical Surface Layer of the Rolling Pairs; Publishing House of University of Technology and Life Sciences: Bydgoszcz, Poland, 2014. [Google Scholar]
- Musiał, J.; Szczutkowski, M.; Polasik, R.; Kałaczyński, T. The influence of hardness of cooperating elements on performance parameters of rolling kinematic pairs. In Proceedings of the 58th International Conference of Machine Design Departments—ICMD 2017, Prague, Czech Republic, 6–8 September 2017; pp. 260–265. [Google Scholar]
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact. Compos. Struct. 2004, 66, 579–590. [Google Scholar] [CrossRef]
- Nunes, L.M.; Paciornik, S.; d’Almeida, J.R.M. Evaluation of the damaged area of glass-fiber-reinforced epoxy-matrix composite materials submitted to ballistic impacts. Compos. Sci. Technol. 2004, 64, 945–954. [Google Scholar] [CrossRef]
- Horiashchenko, S.; Golinka, I.; Bubulis, A.; Jurenas, V. Simulation and Research of the Nozzle with an Ultrasonic Resonator for Spraying Polymeric. Mechanika 2018, 24, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.-W.; Sathish Kumar, S.K.; Ankem, V.A.; Kim, C.G. Multi-functional aramid/epoxy composite for stealth space hypervelocity impact shielding system. Compos. Struct. 2018, 193, 113–120. [Google Scholar] [CrossRef]
- Marx, J.; Portanova, M.; Rabiei, A. A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches. Compos. Struct. 2018, 194, 652–661. [Google Scholar] [CrossRef]
- Rajput, M.S.; Burman, M.; Segalini, A.; Hallstrom, S. Design and evaluation of a novel instrumented drop-weight rig for controlled impact testing of polymer composites. Polym. Test. 2018, 68, 446–455. [Google Scholar] [CrossRef]
- González, E.V.; Maimi, P.; Martin-Santos, E.; Soto, A.; Cruz, P.; de la Escalera, M.F.; Sainz de Aja, J.R. Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements. Int. J. Solids Struct. 2018, 144–145, 230–247. [Google Scholar]
- Available online: https://www.freemansupply.com/products/machinable-media/renshape-modeling-and-styling-boards (accessed on 2 February 2020).
- Available online: https://www.obo-werke.de/en/products/renshaper-pu-boards.html (accessed on 2 February 2020).
No. | Material | , g/cm3 | Shore D | |
---|---|---|---|---|
1 | RenShape® BM5273 | 1.4 | 90 | 120 |
2 | TCF (Tekstolit) | 1.5 | 80 | 85 |
3 | RenShape® BM5035 | 0.45 | 0,02 | 48 |
4 | Cibatool® BM5005 | 0.56 | 25 | 68 |
5 | RenShape® BM5185 | 0.5 | 15 | - |
6 | Cibatool® BM5272 | 1.4 | 80 | 85 |
7 | Cibatool® BM5168 | 1.4 | 90 | 85 |
No. | Formula | Surface Deviation, µm | Roughness Class |
---|---|---|---|
1 | 0.005264 | 7 | |
2 | 0.24025 | 6 | |
3 | 0.32089 | 3 | |
4 | 0.227079 | 4 | |
5 | 0.231453 | 4 | |
6 | 0.09569 | 5 | |
7 | 0.51174 | 6 |
No. | Formula | Roughness Class |
---|---|---|
1 | 7 | |
2 | 6 | |
3 | 2 | |
4 | 2 | |
5 | 3 | |
6 | 4 | |
7 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musiał, J.; Horiashchenko, S.; Polasik, R.; Musiał, J.; Kałaczyński, T.; Matuszewski, M.; Śrutek, M. Abrasion Wear Resistance of Polymer Constructional Materials for Rapid Prototyping and Tool-Making Industry. Polymers 2020, 12, 873. https://doi.org/10.3390/polym12040873
Musiał J, Horiashchenko S, Polasik R, Musiał J, Kałaczyński T, Matuszewski M, Śrutek M. Abrasion Wear Resistance of Polymer Constructional Materials for Rapid Prototyping and Tool-Making Industry. Polymers. 2020; 12(4):873. https://doi.org/10.3390/polym12040873
Chicago/Turabian StyleMusiał, Janusz, Serhiy Horiashchenko, Robert Polasik, Jakub Musiał, Tomasz Kałaczyński, Maciej Matuszewski, and Mścisław Śrutek. 2020. "Abrasion Wear Resistance of Polymer Constructional Materials for Rapid Prototyping and Tool-Making Industry" Polymers 12, no. 4: 873. https://doi.org/10.3390/polym12040873
APA StyleMusiał, J., Horiashchenko, S., Polasik, R., Musiał, J., Kałaczyński, T., Matuszewski, M., & Śrutek, M. (2020). Abrasion Wear Resistance of Polymer Constructional Materials for Rapid Prototyping and Tool-Making Industry. Polymers, 12(4), 873. https://doi.org/10.3390/polym12040873