Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. Preparation of LDBS
2.3. Preparation of Waterborne Polyurethane Coatings
3. Results and Discussion
3.1. Mechanisms of LDBS Self-Assembly to Form Physically Isolated Interface
3.2. Evaluation of the BFFT
3.3. FT-IR Spectroscopy Analysis
3.4. Industrial Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dwight, G.W. Failure Analysis of Paints and Coatings; John Wiley and Sons Ltd Press: Chichester, UK, 2009. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, T.; Sun, X.; Guo, L.; He, L.; Ye, J.; Li, X. Achievement of Both Mechanical Properties and Intrinsic Self-Healing under Body Temperature in Polyurethane Elastomers: A Synthesis Strategy from Waterborne Polymers. Polymers 2020, 12, 989. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wu, Y.; Zhang, S.; Zhang, H.; Zhao, S.; Zhang, J.; Fei, B. Mechanical and Thermal Properties of Waterborne Polyurethane Coating Modified through One-Step Cellulose Nanocrystals/Graphene Materials Sols Method. Coatings 2020, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.-T.; Wang, W.-H.; Hung, W.-H. Evaluating the Properties of a Coating Material with Polycaprolactone-Degradable Fluorinated Silicon-Containing Waterborne Polyurethane. Sustainability 2020, 12, 3745. [Google Scholar] [CrossRef]
- Kong, L.; Xu, D.; He, Z.; Wang, F.; Gui, S.; Fan, J.; Pan, X.; Dai, X.; Dong, X.; Liu, B. Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating. Molecules 2019, 24, 3151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Ye, X.; Lu, L.; Qian, Y.; Wang, L.; Bi, Y.; Wang, Z.; Cai, Z. Preparation of Cross-Linkable Waterborne Polyurethane-Acrylate Coating Films with Multifunctional Properties. Coatings 2020, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.F.; Thorley, M. Organic Coatings: Science and Technology. Carbohydr. Polym. 2000, 41, 427. [Google Scholar] [CrossRef]
- Noble, K.L. Waterborne polyurethanes. Prog. Org. Coat. 1997, 32, 131–136. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, J.C. Waterborne polyurethanes and their properties. J. Polym. Sci. Part A 1996, 34, 1095–1104. [Google Scholar] [CrossRef]
- Wicks, Z.W.; Wicks, D.A.; Rosthauser, J.W. Two package waterborne urethane systems. Prog. Org. Coat. 2002, 44, 161–183. [Google Scholar] [CrossRef]
- Chen, C.; Wei, S.; Xiang, B.; Wang, B.; Wang, Y.; Liang, Y.; Yuan, Y. Synthesis of Silane Functionalized Graphene Oxide and Its Application in Anti-Corrosion Waterborne Polyurethane Composite Coatings. Coatings 2019, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Fuensanta, M.; Khoshnood, A.; Rodriguezllansola, F.; Martinmartinez, J.M. New Waterborne Polyurethane-Urea Synthesized with Ether-Carbonate Copolymer and Amino-Alcohol Chain Extenders with Tailored Pressure-Sensitive Adhesion Properties. Materials 2020, 13, 627. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, H. On the Para/Ortho Reactivity of Isocyanate Groups during the Carbamation of Cellulose Nanocrystals Using 2,4-Toluene Diisocyanate. Polymers 2019, 11, 1164. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D. Study on the Application of Waterborne Two Conponent Polyurethane Construction Coating; Shanghai Jiaotong University: Shanghai, China, 2012. [Google Scholar]
- Liu, H.; Bi, Z.; Wan, Z.; Wang, X.; Wan, Y.; Guo, X.; Cai, Z. Preparation and Performance Optimization of Two-Component Waterborne Polyurethane Locomotive Coating. Coatings 2019, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Lang, M.; Zhang, W.; Li, S.; Zhang, M.; Yu, X. An Empirical Study on the Comprehensive Optimization Method of a Train Diagram of the China High Speed Railway Express. Sustainability 2019, 11, 2141. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Lu, Q.; Zhu, S.; Pang, R.; Shan, W. Effect of resins on the salt spray resistance and wet adhesion of two component waterborne polyurethane coating. e-Polymers 2019, 19, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xu, K.; Zhang, N.; Lu, C.; Zhang, Q.; Yu, L.; Feng, F.; Li, X. In Situ Incorporation of Diamino Silane Group into Waterborne Polyurethane for Enhancing Surface Hydrophobicity of Coating. Molecules 2019, 24, 1667. [Google Scholar] [CrossRef] [Green Version]
- Rui, W.; Zhao, J.; Zhi, W.; Min, Z.; Jian, Z.; Ji, L. Improving BFFT of waterborne polyurethane coating by building encapsulated polyisocyanate emulsion with hydrophobic inter-facial agent. Abs. Pap. Am. Chem. Soc. 2019, 05, 257–258. [Google Scholar]
- Yin, X.; Luo, Y.; Zhang, J. Synthesis and Characterization of Halogen-Free Flame Retardant Two-Component Waterborne Polyurethane by Different Modification. Ind. Eng. Chem. Res. 2017, 56, 1791–1802. [Google Scholar] [CrossRef]
- Mo, Q.; Li, W.; Yang, H.; Gu, F.; Chen, Q.; Yang, R. Water resistance and corrosion protection properties of waterborne polyurethane coating enhanced by montmorillonite modified with Ce3+. Prog. Org. Coat. 2019, 136, 105213. [Google Scholar] [CrossRef]
- Bai, T.; Lv, L.; Du, W.; Fang, W.; Wang, Y. Improving the Tribological and Anticorrosion Performance of Waterborne Polyurethane Coating by the Synergistic Effect between Modified Graphene Oxide and Polytetrafluoroethylene. Nanomaterials 2020, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Ma, Y.; Zhang, Z.; Yang, X.; Huang, M.; Chai, C. The Relationship between Solid Content and Particle Size Ratio of Waterborne Polyurethane. Coatings 2019, 9, 401. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, C.; Mu, C.; Lin, W. A waterborne polyurethane coating functionalized by isobornyl with enhanced antibacterial adhesion and hydrophobic property. Eur. Polym. J. 2018, 108, 498–506. [Google Scholar] [CrossRef]
- Patel, R.H.; Kapatel, P.M. Studies on the effect of the size of waterborne polyurethane nanoparticles on properties and performance of coatings. Int. J. Polym. Anal. Charact. 2019, 24, 1–9. [Google Scholar] [CrossRef]
- Chang, Y.; Kwon, Y.C.; Lee, S.C.; Kim, C. Amphiphilic linear PEO-dendritic carbosilane block copolymers. Macromolecules 2000, 33, 4496–4500. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, H.M.; Wang, F. Synthesis and Surface Properties of Amphiphilic Linear-Dendritic Carbosilane Block Copolymers. Fine Chem. 2015, 32, 505–509. [Google Scholar]
- Sambasivam, A.; Sangwai, A.V.; Sureshkumar, R. Self-Assembly of Nanoparticle-Surfactant Complexes with Rodlike Micelles: A Molecular Dynamics Study. Langmuir 2016, 32, 1214–1219. [Google Scholar] [CrossRef]
- Hongbao, C. Study on Hydrogen Bond in Polyurethane Urea by FT-IR. Chem. Propellants Polym. Mater. 2009, 7, 60–63. [Google Scholar]
- Yang, P.; Li, T.; Li, J.; Zhu, X.; Xia, Y. Kinetics and Mechanism of Carbamate Reaction of 4-Hydroxybenzyl Alcohol with Phenyl Isocyanate. Prog. React. Kinetics Mechan. 2010, 35, 93–104. [Google Scholar] [CrossRef]
- Yang, P.F.; De Han, Y.; Li, T.; Li, J.Y. Effects of solvent polarity on the reaction of phenol with tolylene-2,4-diisocyanate. J. Appl. Polym. Sci. 2012, 123, 580–584. [Google Scholar] [CrossRef]
No. of End Groups | Mn a | wt.% b | CMC c | |
---|---|---|---|---|
PEO-Si-1G | 3 | 1009 | 19.3 | 82.6 |
PEO-Si-2G | 9 | 1488 | 49.6 | 2.3 |
Function | Material | wt. % |
---|---|---|
Hydroxyl polyacrylate dispersion | Macrynal VSM 6299 w/42 WA | 49.6 |
Pigment | Kronos 2160 | 27.4 |
Wetting agent | Surfynol 104 BC | 0.9 |
Dispersing agent | Additol VXW 6208 | 3.1 |
Thickener | Borchigel 0620 | 0.2 |
Leveling agent | Additol VXW 5929 | 0.6 |
Defoamer | Byk 011 | 1.4 |
Deionized water | 4.0 | |
Disperse 15 min, grind 30 min on the bead-mill | ||
Thickener | Borchigel 0620 | 0.2 |
Solvent | Texanol | 0.9 |
Deionized water | 11.7 | |
Total | 100.0 |
Function | Material | wt. % |
---|---|---|
Curing agent | Bayhydur XP 2655 | 75.0 |
Solvent | Dowanol PGDA | 25.0 |
Surfactant | LDBS | 0.0–1.5 |
Total | 100.0 |
Coatings Formulation | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
LDBS% | 0 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.5 |
BFFT (μm) | 80.4 | 92.1 | 104.6 | 117.3 | 121.2 | 114.2 | 107.2 |
Coatings Formulation | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
LDBS% | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 |
BFFT (μm) | 113.6 | 119.5 | 121.7 | 117.2 | 117.3 |
Sample | Carbamate Carbonyl | Urea Carbonyl | X(%) | ||
---|---|---|---|---|---|
Absorption Peak/cm−1 | So/Peak Area | Absorption Peak/cm−1 | Sn/Peak Area | ||
Blank | 1716.38 | 399.60 | 1684.58 | 729.58 | 35.38 |
1.0%LDBS | 1716.99 | 249.63 | 1684.63 | 322.03 | 43.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Li, C.; Jiang, Z.; Wang, Z. Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating. Polymers 2020, 12, 1318. https://doi.org/10.3390/polym12061318
Wang R, Li C, Jiang Z, Wang Z. Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating. Polymers. 2020; 12(6):1318. https://doi.org/10.3390/polym12061318
Chicago/Turabian StyleWang, Ruitao, Chunxiang Li, Zhaohua Jiang, and Zhijiang Wang. 2020. "Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating" Polymers 12, no. 6: 1318. https://doi.org/10.3390/polym12061318
APA StyleWang, R., Li, C., Jiang, Z., & Wang, Z. (2020). Self-Assembly of Amphiphilic Linear−Dendritic Carbosilane Block Surfactant for Waterborne Polyurethane Coating. Polymers, 12(6), 1318. https://doi.org/10.3390/polym12061318