Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vapor Phase Polymerization of PEDOT/Tosylate
2.2. Transfer of PEDOT/TOS onto Elastomeric Substrate
2.3. Patterning of PEDOT/TOS on Elastomeric Substrate
2.4. Conductivity Measurements
2.5. Strain vs. Resistivity Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kayser, L.V.; Lipomi, D.J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Baek, P.; Akbarinejad, A.; Barker, D.; Travas-Sejdic, J. Conjugated polymers and composites for stretchable organic electronics. J. Mater. Chem. C 2019, 7, 5534–5552. [Google Scholar] [CrossRef]
- Huang, H.; Spaepen, F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 2000, 48, 3261–3269. [Google Scholar] [CrossRef]
- Lacour, S.P.; Wagner, S.; Huang, Z.; Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 2003, 82, 2404–2406. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Lacour, S.P.; Wagner, S.; Suo, Z. Stretchable wavy metal interconnects. J. Vac. Sci. Technol. A 2004, 22, 1723–1725. [Google Scholar] [CrossRef] [Green Version]
- Widlund, T.; Yang, S.; Hsu, Y.Y.; Lu, N. Stretchability and compliance of freestanding serpentine-shaped ribbons. Int. J. Solids Struct. 2014, 51, 4026–4037. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Qiao, S.; Lu, N. Elasticity solutions to nonbuckling serpentine ribbons. J. Appl. Mech. Trans. ASME 2017, 84. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, H.; Su, Y.; Xu, S.; Cheng, H.; Fan, J.A.; Hwang, K.C.; Rogers, J.A.; Huang, Y. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 2013, 61, 7816–7827. [Google Scholar] [CrossRef]
- Pan, T.; Pharr, M.; Ma, Y.; Ning, R.; Yan, Z.; Xu, R.; Feng, X.; Huang, Y.; Rogers, J.A. Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Sim, K.; Li, Y.; Song, J.; Yu, C. Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on Prestrained Elastomers. Adv. Mater. Technol. 2019, 4. [Google Scholar] [CrossRef]
- Huang, Y.; Mu, Z.; Feng, P.; Yuan, J. Mechanics Design for Compatible Deformation of Fractal Serpentine Interconnects in High-Density Stretchable Electronics. J. Appl. Mech. Trans. ASME 2019, 86. [Google Scholar] [CrossRef]
- Li, M.; Xia, J.; Li, R.; Kang, Z.; Su, Y. Design of two-dimensional horseshoe layout for stretchable electronic systems. J. Mater. Sci. 2013, 48, 8443–8448. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y. Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics. J. Appl. Mech. Trans. ASME 2016, 83. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Duan, S.; Jiang, H.; Shen, J.; Li, C. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. J. Mater. Chem. C 2017, 5, 8714–8722. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Lu, S.; Ma, Y.; Feng, X. Elastomers with Microislands as Strain Isolating Substrates for Stretchable Electronics. Adv. Mater. Technol. 2019, 4. [Google Scholar] [CrossRef]
- Lv, C.; Yu, H.; Jiang, H. Archimedean spiral design for extremely stretchable interconnects. Extrem. Mech. Lett. 2014, 1, 29–34. [Google Scholar] [CrossRef]
- Qaiser, N.; Khan, S.M.; Nour, M.; Rehman, M.U.; Rojas, J.P.; Hussain, M.M. Mechanical response of spiral interconnect arrays for highly stretchable electronics. Appl. Phys. Lett. 2017, 111. [Google Scholar] [CrossRef]
- Su, Y.; Wang, S.; Huang, Y.; Luan, H.; Dong, W.; Fan, J.A.; Yang, Q.; Rogers, J.A.; Huang, Y. Elasticity of fractal inspired interconnects. Small 2015, 11, 367–373. [Google Scholar] [CrossRef]
- Cuttaz, E.; Goding, J.; Vallejo-Giraldo, C.; Aregueta-Robles, U.; Lovell, N.; Ghezzi, D.; Green, R.A. Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomater. Sci. 2019, 7, 1372–1385. [Google Scholar] [CrossRef]
- Boehler, C.; Aqrawe, Z.; Asplund, M. Applications of PEDOT in bioelectronic medicine. Bioelectron. Med. 2019, 2, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Bansal, M.; Sharma, M.; Bullen, C.; Svirskis, D. Free standing PEDOT films prepared by vapour phase polymerisation as electrically tuneable barriers to drug permeability. Mater. Sci. Eng. C 2018, 84, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Yang, Y.; Sun, N.; Li, G.; Liu, Y.; Chen, C.; Shi, J.; Xie, L.; Jiang, H.; Bao, D.; et al. A Wrinkled PEDOT:PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors. Adv. Funct. Mater. 2018, 28. [Google Scholar] [CrossRef]
- Edberg, J.; Iandolo, D.; Brooke, R.; Liu, X.; Musumeci, C.; Andreasen, J.W.; Simon, D.T.; Evans, D.; Engquist, I.; Berggren, M. Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure. Adv. Funct. Mater. 2016, 26, 6950–6960. [Google Scholar] [CrossRef]
- Brooke, R.; Edberg, J.; Iandolo, D.; Berggren, M.; Crispin, X.; Engquist, I. Controlling the electrochromic properties of conductive polymers using UV-light. J. Mater. Chem. C 2018, 6, 4663–4670. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.; Fabretto, M.; Evans, D.; Hojati-Talemi, P.; Gruber, C.; Murphy, P. Vacuum vapour phase polymerization of high conductivity PEDOT: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant. Polymer 2012, 53, 2146–2151. [Google Scholar] [CrossRef]
- Greco, F.; Zucca, A.; Taccola, S.; Menciassi, A.; Fujie, T.; Haniuda, H.; Takeoka, S.; Dario, P.; Mattoli, V. Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 2011, 7, 10642–10650. [Google Scholar] [CrossRef] [Green Version]
- Takei, K. Flexible and Stretchable Medical Devices; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Zhou, J.; Li, E.Q.; Li, R.; Xu, X.; Ventura, I.A.; Moussawi, A.; Anjum, D.H.; Hedhili, M.N.; Smilgies, D.-M.; Lubineau, G.; et al. Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J. Mater. Chem. C 2015, 3, 2528–2538. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N.I.; et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Sun, K.; Ouyang, J. Stretchable and Conductive Polymer Films Prepared by Solution Blending. ACS Appl. Mater. Interfaces 2015, 7, 18415–18423. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, Y.R.; Lee, G.; Jin, S.W.; Lee, Y.H.; Hong, S.Y.; Park, H.; Kim, J.W.; Lee, S.S.; Ha, J.S. Highly Conductive, Stretchable, and Transparent PEDOT:PSS Electrodes Fabricated with Triblock Copolymer Additives and Acid Treatment. ACS Appl. Mater. Interfaces 2018, 10, 28027–28035. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Rating Adhesion by Tape Test; ASTM International: West Conshohocken, PA, USA, 2017; Volume D3359-17. [Google Scholar]
Layer Number | Conductivity (S cm−1) |
---|---|
1 | 37.7 ± 1.4 |
2 | 43.2 ± 2 |
3 | 53.1 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqrawe, Z.; Boehler, C.; Bansal, M.; O’Carroll, S.J.; Asplund, M.; Svirskis, D. Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate. Polymers 2020, 12, 1654. https://doi.org/10.3390/polym12081654
Aqrawe Z, Boehler C, Bansal M, O’Carroll SJ, Asplund M, Svirskis D. Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate. Polymers. 2020; 12(8):1654. https://doi.org/10.3390/polym12081654
Chicago/Turabian StyleAqrawe, Zaid, Christian Boehler, Mahima Bansal, Simon J. O’Carroll, Maria Asplund, and Darren Svirskis. 2020. "Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate" Polymers 12, no. 8: 1654. https://doi.org/10.3390/polym12081654
APA StyleAqrawe, Z., Boehler, C., Bansal, M., O’Carroll, S. J., Asplund, M., & Svirskis, D. (2020). Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate. Polymers, 12(8), 1654. https://doi.org/10.3390/polym12081654