Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schaefgen, J.R.; Flory, P.J. Synthesis of multichain polymers and investigation of their viscosities. J. Am. Chem. Soc. 1948, 70, 2709–2718. [Google Scholar] [CrossRef]
- Morton, M.; Helminiak, T.E.; Gadkary, S.D.; Bueche, F. Preparation and properties of monodisperse branched polystyrene. J. Polym. Sci. 1962, 57, 471–482. [Google Scholar] [CrossRef]
- Ren, J.M.; McKenzie, T.G.; Fu, Q.; Wong, E.H.H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T.P.; Boyer, C.; Qiao, G.G. Star Polymers. Chem. Rev. 2016, 116, 6743–6836. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W.; Li, J. Star polymers: Advances in biomedical applications. Prog. Polym. Sci. 2015, 46, 55–85. [Google Scholar] [CrossRef]
- Higashihara, T.; Hayashi, M.; Hirao, A. Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Prog. Polym. Sci. 2011, 36, 323–375. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev. 2001, 101, 3747–3792. [Google Scholar] [CrossRef]
- Lapienis, G. Star-shaped polymers having PEO arms. Prog. Polym. Sci. 2009, 34, 852–892. [Google Scholar] [CrossRef]
- Hirao, A.; Hayashi, M.; Loykulnant, S.; Sugiyama, K. Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Prog. Polym. Sci. 2005, 30, 111–182. [Google Scholar] [CrossRef]
- Chremos, A.; Douglas, J.F. Influence of polymer architectures on diffusion in unentangled polymer melts. Soft Matter 2017, 13, 5778–5784. [Google Scholar] [CrossRef]
- Fetters, L.J.; Kiss, A.D.; Pearson, D.S.; Quack, G.F.; Vitus, F.J. Rheological behavior of star-shaped polymers. Macromolecules 1993, 26, 647–654. [Google Scholar] [CrossRef]
- Jin, S.; Higashihara, T.; Jin, K.S.; Yoon, J.; Rho, Y.; Ahn, B.; Kim, J.; Hirao, A.; Ree, M. Synchrotron X-ray scattering characterization of the molecular structures of star polystyrenes with varying numbers of arms. J. Phys. Chem. B 2010, 114, 6247–6257. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Jin, K.S.; Yoon, J.; Heo, K.; Kim, J.; Kim, W.-W.; Ree, M.; Higashihara, T.; Watanabe, T.; Hirao, A. X-ray scattering studies on molecular structures of star and dendritic polymers. Macromol. Res. 2008, 16, 686–694. [Google Scholar] [CrossRef]
- Snijkers, F.; Cho, H.Y.; Nese, A.; Matyjaszewski, K.; Pyckhout-Hintzen, W.; Vlassopoulos, D. Effects of core microstructure on structure and dynamics of star polymer melts: From polymeric to colloidal response. Macromolecules 2014, 47, 5347–5356. [Google Scholar] [CrossRef]
- Gnanou, Y.; Lutz, P.; Rempp, P. Synthesis of star-shaped poly(ethylene oxide). Makromol. Chem. 1988, 189, 2885–2892. [Google Scholar] [CrossRef]
- Knoll, K.; Nießner, N. Styrolux+ and styroflex+ - from transparent high impact polystyrene to new thermoplastic elastomers: Syntheses, applications and blends with other styrene based polymers. Macromol. Symp. 1998, 132, 231–243. [Google Scholar] [CrossRef]
- Quirk, R.P.; Kim, J. Recent advances in thermoplastic elastomer synthesis. Rubber Chem. Technol. 1991, 64, 450–468. [Google Scholar] [CrossRef]
- Forman, D.C.; Wieberger, F.; Gröschel, A.; Müller, A.H.E.; Schmidt, H.-W.; Ober, C.K. Comparison of star and linear ArF resists. In Proceedings of the SPIE ADVANCED LITHOGRAPHY, San Jose, CA, USA, 21–25 February 2010. [Google Scholar]
- Lee, B.; Yoon, J.; Oh, W.; Hwang, Y.; Heo, K.; Jin, K.S.; Kim, J.; Kim, K.-W.; Ree, M. In-situ gazing incidence small angle X-ray scattering studies on nanopore evolution in low-k organosilicate dielectric thin films. Macromolecules 2005, 38, 3395–3405. [Google Scholar] [CrossRef]
- Lee, B.; Oh, W.; Hwang, Y.; Park, Y.-H.; Yoon, J.; Jin, K.S.; Heo, K.; Kim, J.; Kim, K.-W.; Ree, M. Imprinting well-controlled nanopores in organosilicate dielectric films: Triethoxysilyl-modified six-armed poly(ε-caprolactone) and its chemical hybridization with organosilicate precursor. Adv. Mater. 2005, 17, 696–701. [Google Scholar] [CrossRef]
- Liu, X.; Jin, X.; Ma, P.X. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repairs. Nat. Mater. 2011, 10, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Matyjaszewski, K.; Tsarevsky, N.V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276–288. [Google Scholar] [CrossRef]
- Rho, Y.; Kim, C.; Higashihara, T.; Jin, S.; Jung, J.; Shin, T.J.; Hirao, A.; Ree, M. Complex self-assembled morphologies of thin films of an asymmetric A3B3C3 star polymer. ACS Macro Lett. 2013, 2, 849–855. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Jung, S.; Kim, C.; Ree, B.J.; Kawato, D.; Nishikawa, N.; Suemasa, D.; Isono, T.; Kakuchi, T.; Satoh, T.; et al. Hierarchical structures in thin films of miktoarm star polymers: Poly(n-hexyl isocyanate)(12k)-Poly(ε-caprolactone)1~3(5k). Macromolecules 2014, 47, 7510–7524. [Google Scholar] [CrossRef]
- Hirao, A.; Tokuda, Y. Synthesis of well-defined star-branched polymers by coupling reactions of polymer anions consisting of two polymer chains with chain-end-multifunctionalized polystyrenes with benzyl bromide moieties. Macromolecules 2003, 36, 6081–6086. [Google Scholar] [CrossRef]
- Hirao, A.; Hayashi, M.; Tokuda, Y. Synthesis of branched polymers by means of living anionic polymerization, 5. Synthesis of star polymers by reactions of end-functionalized polystyrenes with chloromethylphenyl groups with polymer anions consisting of two polymer chains. Macromol. Chem. Phys. 2001, 202, 1606–1613. [Google Scholar] [CrossRef]
- Shin, S.R.; Jin, K.S.; Lee, C.K.; Kim, S.I.; Spinks, G.M.; So, I.; Jeon, J.-H.; Kang, T.M.; Mun, J.Y.; Han, S.-S.; et al. Fullerene attachment enhances performance of a DNA nanomachine. Adv. Mater. 2009, 21, 1907–1910. [Google Scholar] [CrossRef]
- Wong, J.C.; Xiang, L.; Ngoi, K.H.; Chia, C.H.; Jin, K.S.; Ree, M. Quantitative structural analysis of polystyrene nanoparticles using synchrotron X-ray scattering and dynamic light scattering. Polymers 2020, 12, 477. [Google Scholar] [CrossRef] [Green Version]
- Ngoi, K.H.; Xiang, L.; Wong, J.C.; Chia, C.H.; Jin, K.S.; Ree, M. Morphology details and size distribution characteristics of single-pot-synthesized silica nanoparticles. J. Ind. Eng. Chem. 2020, 89, 212–221. [Google Scholar] [CrossRef]
- Glatter, O.; Kratky, O. Small Angle X-ray Scattering; Academic: New York, NY, USA, 1982. [Google Scholar]
- Porod, V.G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden systemen. Kolloid-Zeitschrift 1951, 124, 83–114. [Google Scholar] [CrossRef]
- Guinier, A.; Fournet, G.; Yudowitch, K.L. Small-Angle Scattering of X-rays; Wiley: New York, NY, USA, 1955. [Google Scholar]
- Glatter, O.J. A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 1977, 10, 415–421. [Google Scholar] [CrossRef]
- Koppel, D.E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J. Chem. Phys. 1972, 57, 4814–4820. [Google Scholar] [CrossRef]
- Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/technical-notes/TN101104IntensityVolumeNumber.html. (accessed on 1 August 2020).
- Provencher, S.W. CONTIN. A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Phys. Comm. 1982, 27, 229–242. [Google Scholar] [CrossRef]
Star Polymer | Arm | Polymer | ||
---|---|---|---|---|
Number b | Đ d | |||
17-Arm(2k)-PS | 2300 | 17 | 45800 | 1.02 |
17-Arm(6k)-PS | 6000 | 17 | 112000 | 1.02 |
17-Arm(10k)-PS | 9500 | 17 | 167000 | 1.02 |
17-Arm(20k)-PS | 20300 | 17 | 340000 | 1.02 |
Structure Parameter | Star Polymers | |||||||
---|---|---|---|---|---|---|---|---|
17-Arm(2k)-PS | 17-Arm(2k)-PS | 17-Arm(2k)-PS | 17-Arm(2k)-PS | |||||
CHXa | THFb | CHX | THF | CHX | THF | CHX | THF | |
Guinier analysis: [lnI(q) vs. q2 plot] | ||||||||
Rg,Gc (nm) | 2.67 | 2.80 | 3.75 | 4.12 | 5.20 | 6.05 | 7.18 | 8.52 |
Rg,G(THF)/Rg,G(Θ) | 1.05 | 1.10 | 1.16 | 1.19 | ||||
Kratky analysis-I: [I(q)q2vs. qRg,G plot] | ||||||||
qmaxRg,Gd | 1.74 | 1.70 | 1.75 | 1.70 | 1.73 | 1.74 | 1.75 | 1.62 |
Kratky analysis-II [I(q)q5/3 vs. qRg,G plot] | ||||||||
qmaxRg,Ge | 1.58 | 1.58 | 1.59 | 1.53 | 1.62 | 1.55 | 1.59 | 1.49 |
Kratky analysis-III [I(q)qn vs. q plot] | ||||||||
n f | 4.64 | 4.80 | 4.39 | 4.43 | 3.87 | 3.92 | 3.82 | 3.92 |
Porod analysis: [I(q) vs. q−nplot] | ||||||||
n g | 1.40 | 1.00 | 1.70 | 1.40 | 1.90 | 1.60 | 1.98 | 1.65 |
IFT analysis | ||||||||
Rg,IFTh (nm) | 2.69 | 2.80 | 3.71 | 4.19 | 5.26 | 6.20 | 7.25 | 9.13 |
Rmax,IFTi (nm) | 3.15 | 3.43 | 4.37 | 5.00 | 6.13 | 7.41 | 8.47 | 11.00 |
Dmax,IFTj (nm) | 9.00 | 8.80 | 11.80 | 12.50 | 17.50 | 19.00 | 24.20 | 27.40 |
Rmax,IFT/Rg,IFT | 1.17 | 1.23 | 1.18 | 1.19 | 1.17 | 1.20 | 1.17 | 1.20 |
Dmax,IFT/Rmax,IFT | 2.86 | 2.57 | 2.70 | 2.50 | 2.86 | 2.56 | 2.86 | 2.49 |
Model analysis | ||||||||
Rek(nm) | 3.53 (0.10) l | 3.86 (0.14) | 4.86 (0.18) | 5.79 (0.25) | 6.78 (0.29) | 8.55 (0.34) | 9.30 (0.41) | 12.50 (0.50) |
σf,em(nm) | 0.69 | 0.60 | 0.99 | 0.65 | 1.44 | 0.99 | 2.11 | 1.48 |
ξ n (nm) | 0.40 | 0.20 | 0.80 | 0.80 | 1.60 | 1.90 | 2.60 | 4.30 |
Ravo(nm) | 2.95 | 3.22 | 4.05 | 4.84 | 5.56 | 7.13 | 7.63 | 10.58 |
ε p | 0.51 | 0.50 | 0.50 | 0.51 | 0.46 | 0.50 | 0.46 | 0.54 |
Rt,eq(nm) | 5.60 | 5.66 | 7.83 | 7.74 | 11.10 | 11.52 | 15.63 | 16.94 |
rc,er(nm) | 1.46 | 2.06 | 1.89 | 3.84 | 2.46 | 5.58 | 2.97 | 8.06 |
tf,es(nm) | 4.14 | 3.60 | 5.94 | 3.90 | 8.64 | 5.94 | 12.66 | 8.88 |
Rav,tt(nm) | 4.69 | 4.72 | 6.53 | 6.48 | 9.10 | 9.60 | 12.82 | 14.34 |
rc,e/Rt,e | 0.26 | 0.36 | 0.24 | 0.50 | 0.22 | 0.48 | 0.19 | 0.48 |
tf,e/Rt,e | 0.74 | 0.64 | 0.76 | 0.50 | 0.78 | 0.52 | 0.81 | 0.52 |
Rg u (nm) | 2.65 | 2.78 | 3.67 | 4.10 | 5.14 | 6.06 | 7.14 | 8.92 |
Rmaxv(nm) | 3.13 | 3.34 | 4.30 | 4.95 | 5.96 | 7.30 | 8.24 | 10.90 |
Dmax w (nm) | 9.27 | 7.91 | 12.64 | 12.44 | 17.24 | 21.77 | 23.65 | 30.90 |
Rg/Rg,G | 0.99 | 0.99 | 0.98 | 1.00 | 0.99 | 1.00 | 0.99 | 1.05 |
Rg/Rg,IFT | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
Rmax/Rmax,IFT | 0.99 | 0.97 | 0.98 | 0.99 | 0.97 | 0.99 | 0.97 | 0.99 |
Dmax/Dmax,IFT | 1.03 | 0.90 | 1.07 | 1.00 | 0.99 | 1.15 | 0.98 | 1.13 |
DLS Analysis | ||||||||
Rh,zx (nm) | 3.76 | 4.45 | 5.23 | 5.47 | 7.31 | 7.60 | 9.66 | 10.69 |
PDIDLSy | 0.038 | 0.273 | 0.024 | 0.026 | 0.013 | 0.034 | 0.024 | 0.009 |
Rh,intensityz (nm) | 3.96 (0.95) | 4.37 (1.06) | 5.52 (1.33) | 5.79 (1.34) | 7.63 (1.76) | 8.00 (1.78) | 10.10 (2.38) | 11.10 (2.31) |
Rh,voulmeaa (nm) | 3.39 (0.85) | 3.73 (0.95) | 4.71 (1.20) | 4.99 (1.24) | 6.60 (1.63) | 6.98 (1.68) | 8.70 (2.19) | 9.81 (2.26) |
Rh,numberab (nm) | 3.00 (0.65) | 3.28 (0.74) | 4.13 (0.93) | 4.40 (0.98) | 5.83 (1.29) | 6.23 (1.32) | 7.66 (1.71) | 8.81 (1.86) |
Rh,z/Rg | 1.42 | 1.60 | 1.43 | 1.33 | 1.42 | 1.25 | 1.35 | 1.20 |
Rh,z/Re | 1.06 | 1.15 | 1.08 | 0.94 | 1.08 | 0.89 | 1.04 | 0.86 |
Rh,z/Rt,e | 0.67 | 0.79 | 0.67 | 0.71 | 0.66 | 0.66 | 0.62 | 0.63 |
Rh,intensity/Rg | 1.49 | 1.57 | 1.50 | 1.41 | 1.48 | 1.32 | 1.41 | 1.24 |
Rh,intensity/Re | 1.12 | 1.13 | 1.14 | 1.00 | 1.13 | 0.94 | 1.09 | 0.89 |
Rg,intensity/Rt,e | 0.71 | 0.77 | 0.70 | 0.75 | 0.69 | 0.69 | 0.65 | 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, J.C.; Xiang, L.; Ngoi, K.H.; Chia, C.H.; Jin, K.S.; Hirao, A.; Ree, M. Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics. Polymers 2020, 12, 1894. https://doi.org/10.3390/polym12091894
Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Hirao A, Ree M. Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics. Polymers. 2020; 12(9):1894. https://doi.org/10.3390/polym12091894
Chicago/Turabian StyleWong, Jia Chyi, Li Xiang, Kuan Hoon Ngoi, Chin Hua Chia, Kyeong Sik Jin, Akira Hirao, and Moonhor Ree. 2020. "Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics" Polymers 12, no. 9: 1894. https://doi.org/10.3390/polym12091894
APA StyleWong, J. C., Xiang, L., Ngoi, K. H., Chia, C. H., Jin, K. S., Hirao, A., & Ree, M. (2020). Seventeen-Armed Star Polystyrenes in Various Molecular Weights: Structural Details and Chain Characteristics. Polymers, 12(9), 1894. https://doi.org/10.3390/polym12091894