Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadry, H.; Wadnap, S.; Xu, C.; Ahsan, F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 2019, 135, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Y.; Lin, X.; Yang, Q.; Yang, G. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics 2020, 12, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metral, B.; Bischoff, A.; Ley, C.; Ibrahim, A.; Allonas, X. Photochemical Study of a Three-Component Photocyclic Initiating System for Free Radical Photopolymerization: Implementing a Model for Digital Light Processing 3D Printing. ChemPhotoChem 2019, 3, 1109–1118. [Google Scholar] [CrossRef]
- Li, J.; Cui, Y.; Qin, K.; Yu, J.; Guo, C.; Yang, J.; Zhang, C.; Jiang, D.; Wang, X. Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing. Polym. Bull. 2015, 73, 571–585. [Google Scholar] [CrossRef]
- Cortés, A.; Sánchez-Romate, X.F.; Jiménez-Suárez, A.; Campo, M.; Ureña, A.; Prolongo, S.G. Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology. Polymers 2020, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Dong, H.-H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Taormina, G.; Sciancalepore, C.; Messori, M.; Bondioli, F. 3D printing processes for photocurable polymeric materials: Technologies, materials, and future trends. J. Appl. Biomater. Funct. Mater. 2018, 16, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stampfl, J.; Wöß, A.; Seidler, S.; Fouad, H.; Pisaipan, A.; Schwager, F.; Liska, R. Water Soluble, Photocurable Resins for Rapid Prototyping Applications. Macromol. Symp. 2004, 217, 99–108. [Google Scholar] [CrossRef]
- Shie, M.-Y.; Chang, W.-C.; Wei, L.-J.; Huang, Y.-H.; Chen, C.-H.; Shih, C.-T.; Chen, Y.-W.; Shen, Y.-F. 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials 2017, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, D.; Zheng, Y.; Zhao, L.; Xu, T.; Guo, Z.; Hussain, M.I.; Zeng, J.; Lou, L.; Sun, Y.; et al. A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing. Biofabrication 2020, 12, 035015. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.; Cho, S. Comparative Studies on Polyurethane Composites Filled with Polyaniline and Graphene for DLP-Type 3D Printing. Polymers 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheon, J.M.; Jeong, B.Y.; Yoo, C.S.; Park, D.J.; Bae, J.K.; Chun, J.H. Synthesis and Characterization of Waterborne Polyurethane Using Nanoclay. J. Adhes. Interface 2007, 8, 4. [Google Scholar]
- Lee, S.H.; Cheon, J.M.; Jeong, B.Y.; Kim, H.-D.; Chun, J.H. Synthesis and Properties of Waterborne Polyurethane Acrylate Adhesive. Adhes. Interface 2015, 16, 156–161. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog. Org. Coat. 2013, 76, 157–164. [Google Scholar] [CrossRef]
- Bhattarai, S.; Lee, S.; Lee, D.; Lee, Y. Effect of Molecular Weight of Poly(tetramethylene glycol) on Waterborne Polyurethane Dispersion Coating Gloss. Bull. Korean Chem. Soc. 2019, 40, 1046–1049. [Google Scholar] [CrossRef]
- Bernard, C.; Goodwin, D.G.; Gu, X.; Celina, M.; Nyden, M.; Jacobs, D.; Sung, L.; Nguyen, T. Graphene oxide/waterborne polyurethane nanocoatings: Effects of graphene oxide content on performance properties. J. Coat. Technol. Res. 2020, 17, 255–269. [Google Scholar] [CrossRef] [PubMed]
MW | Series | Soft Segment | Ionic Group | TEA | |||
---|---|---|---|---|---|---|---|
PCL | H12MDI | DMBA | H12MDI | ||||
#1 | 3000 | WPU-3 | 0.0293 | 0.0393 | 0.0101 | 0.0101 | 0.0101 |
#2 | 6000 | WPU-6 | 0.0310 | 0.0360 | 0.0101 | 0.0101 | 0.0101 |
#3 | 10,000 | WPU-10 | 0.0316 | 0.0346 | 0.0101 | 0.0101 | 0.0101 |
#4 | 30,000 | WPU-30 | 0.0323 | 0.0333 | 0.0101 | 0.0101 | 0.0101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-H.; Won, J.C.; Lim, W.B.; Min, J.G.; Lee, J.H.; Kwon, C.R.; Lee, G.H.; Huh, P. Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers 2021, 13, 44. https://doi.org/10.3390/polym13010044
Bae J-H, Won JC, Lim WB, Min JG, Lee JH, Kwon CR, Lee GH, Huh P. Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers. 2021; 13(1):44. https://doi.org/10.3390/polym13010044
Chicago/Turabian StyleBae, Ji-Hong, Jong Chan Won, Won Bin Lim, Jin Gyu Min, Ju Hong Lee, Chung Ryeol Kwon, Gyu Hyeok Lee, and Pilho Huh. 2021. "Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane" Polymers 13, no. 1: 44. https://doi.org/10.3390/polym13010044
APA StyleBae, J.-H., Won, J. C., Lim, W. B., Min, J. G., Lee, J. H., Kwon, C. R., Lee, G. H., & Huh, P. (2021). Synthesis and Characteristics of Eco-Friendly 3D Printing Material Based on Waterborne Polyurethane. Polymers, 13(1), 44. https://doi.org/10.3390/polym13010044