Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis
2.2.1. BPD-D
2.2.2. BPDM-D
2.2.3. BPDP-D
2.3. Measurement
2.4. Photolysis
2.5. ESR Measurement
2.6. Photo-Differential Scanning Calorimetry (Photo-DSC)
3. Results and Discussion
3.1. Synthesis and Basic Properties
3.2. Optical Properties
3.3. Electrochemical Properties
3.4. Thermal Properties
3.5. Photolysis and ESR Studies
3.6. Photopolymerization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, P.; Zhang, J.; Dumur, F.; Tehfe, M.A.; Morlet-Savary, F.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 2015, 41, 32–66. [Google Scholar] [CrossRef]
- Yilmaz, G.; Yagci, Y. Light-induced step-growth polymerization. Prog. Polym. Sci. 2020, 100, 101178. [Google Scholar] [CrossRef]
- Malik, M.S.; Schlögl, S.; Wolfahrt, M.; Sangermano, M. Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers. Polymers 2020, 12, 2146. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, M.; Johnson, J.A. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chem. Rev. 2016, 116, 10167–10211. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.; Zhang, J.; Zhao, J.; Stenzel, M.H. Light-induced release of molecules from polymers. Prog. Polym. Sci. 2017, 74, 1–33. [Google Scholar] [CrossRef]
- Singh, M.; Rana, S.; Agarwal, S. Light induced morphological reforms in thin film of advanced nano-materials for energy generation: A review. Opt. Laser Technol. 2020, 129, 106284. [Google Scholar] [CrossRef]
- Corrigan, N.; Boyer, C. In the Limelight: 2D and 3D Materials via Photo-Controlled Radical Polymerization. Trends Chem. 2020, 2, 689–706. [Google Scholar] [CrossRef]
- Samadian, H.; Maleki, H.; Allahyari, Z.; Jaymand, M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord. Chem. Rev. 2020, 420, 213432. [Google Scholar] [CrossRef]
- Kowalska, A.; Sokolowski, J.; Bociong, K. The Photoinitiators Used in Resin Based Dental Composite—A Review and Future Perspectives. Polymers 2021, 13, 470. [Google Scholar] [CrossRef] [PubMed]
- Tomal, W.; Ortyl, J. Water-Soluble Photoinitiators in Biomedical Applications. Polymers 2020, 12, 1073. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Zhang, Y.; Sun, K.; Xu, Y.; Morlet-Savary, F.; Graff, B.; Noirbent, G.; Pigot, C.; Brunel, D.; et al. Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers 2020, 12, 1394. [Google Scholar] [CrossRef]
- Liu, F.; Liu, A.; Tao, W.; Yang, Y. Preparation of UV curable organic/inorganic hybrid coatings-a review. Prog. Org. Coatings 2020, 145, 105685. [Google Scholar] [CrossRef]
- Fuchs, Y.; Soppera, O.; Haupt, K. Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review. Anal. Chim. Acta 2012, 717, 7–20. [Google Scholar] [CrossRef]
- Xiao, P.; Lalevée, J.; Allonas, X.; Fouassier, J.; Ley, C.; El-Roz, M.; Shi, S.Q.; Nie, J. Photoinitiation mechanism of free radical photopolymerization in the presence of cyclic acetals and related compounds. J. Polym. Sci. Part. A Polym. Chem. 2010, 48, 5758–5766. [Google Scholar] [CrossRef]
- Dietlin, C.; Trinh, T.T.; Schweizer, S.; Graff, B.; Morlet-Savary, F.; Noirot, P.-A.; Lalevée, J. New Phosphine Oxides as High Performance Near-UV Type I Photoinitiators of Radical Polymerization. Molecules 2020, 25, 1671. [Google Scholar] [CrossRef] [Green Version]
- Breloy, L.; Negrell, C.; Mora, A.-S.; Li, W.S.J.; Brezová, V.; Caillol, S.; Versace, D.-L. Vanillin derivative as performing type I photoinitiator. Eur. Polym. J. 2020, 132, 109727. [Google Scholar] [CrossRef]
- You, J.; Cao, D.; Hu, T.; Ye, Y.; Jia, X.; Li, H.; Hu, X.; Dong, Y.; Ma, Y.; Wang, T. Novel Norrish type I flavonoid photoinitiator for safe LED light with high activity and low toxicity by inhibiting the ESIPT process. Dye. Pigment. 2021, 184, 108865. [Google Scholar] [CrossRef]
- Liao, W.; Xu, C.; Wu, X.; Liao, Q.Y.; Xiong, Y.; Li, Z.; Tang, H.D. Photobleachable cinnamoyl dyes for radical visible pho-toinitiators. Dye. Pigment. 2020, 178, 108350. [Google Scholar] [CrossRef]
- Qiu, W.; Li, M.; Yang, Y.; Li, Z.; Dietliker, K.P. Cleavable coumarin-based oxime esters with terminal heterocyclic moieties: Photobleachable initiators for deep photocuring under visible LED light irradiation. Polym. Chem. 2020, 11, 1356–1363. [Google Scholar] [CrossRef]
- Li, Y.-H.; Chen, Y.-C. Triphenylamine-hexaarylbiimidazole derivatives as hydrogen-acceptor photoinitiators for free radical photopolymerization under UV and LED light. Polym. Chem. 2020, 11, 1504–1513. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Liu, T.-Y.; Li, Y.-H. Photoreactivity study of photoinitiated free radical polymerization using Type II photoinitiator containing thioxanthone initiator as a hydrogen acceptor and various amine-type co-initiators as hydrogen donors. J. Coatings Technol. Res. 2021, 18, 99–106. [Google Scholar] [CrossRef]
- Tang, L.; Nie, J.; Zhu, X. A high performance phenyl-free LED photoinitiator for cationic or hybrid photopolymerization and its application in LED cationic 3D printing. Polym. Chem. 2020, 11, 2855–2863. [Google Scholar] [CrossRef]
- Shao, J.; Huang, Y.; Fan, Q. Visible light initiating systems for photopolymerization: Status, development and challenges. Polym. Chem. 2014, 5, 4195–4210. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Brunel, D.; Dumur, F. Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. Eur. Polym. J. 2020, 133, 109797. [Google Scholar] [CrossRef]
- Huang, T.L.; Li, Y.H.; Chen, Y.C. Benzophenone derivatives as novel organosoluble visible light TypeIIphotoinitiators fo-rUVandLEDphotoinitiating systems. J. Polym. Sci. 2020, 58, 2914–2925. [Google Scholar] [CrossRef]
- Jiang, X.; Yin, J. Dendritic Macrophotoinitiator Containing Thioxanthone and Coinitiator Amine. Macromolecules 2004, 37, 7850–7853. [Google Scholar] [CrossRef]
- Andrzejewska, E.; Andrzejewski, M. Polymerization kinetics of photocurable acrylic resins. J. Polym. Sci. Part. A Polym. Chem. 1998, 36, 665–673. [Google Scholar] [CrossRef]
- Dworak, C.; Koch, T.; Varga, F.; Liska, R. Photopolymerization of biocompatible phosphorus-containing vinyl esters and vinyl carbamates. J. Polym. Sci. Part. A Polym. Chem. 2010, 48, 2916–2924. [Google Scholar] [CrossRef]
- Hammond, G.S.; Moore, W.M. The role of a triplet state in the photoreduction of benzophenone. J. Am. Chem. Soc. 1959, 81, 6334. [Google Scholar] [CrossRef]
- Rehm, D.; Weller, A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 1970, 8, 259–271. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Ali, S.; Akram, M.Y.; Nie, J.; Zhu, X. The effect of polyethylene glycoldiacrylate complexation on type II photoinitiator and promotion for visible light initiation system. J. Photochem. Photobiol. A Chem. 2019, 384, 112037. [Google Scholar] [CrossRef]
Sample | DMF | DCM | THF | Acetone | Methanol | TMPTA b | TMPTMA c |
---|---|---|---|---|---|---|---|
BP | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
EMK | ○ | ○ | ○ | ○ | ○ | ○ | ○ |
BPD-D | ○ | ○ | ○ | ○ | Δ | Δ | ○ |
BPDM-D | ○ | ○ | ○ | ○ | Δ | X | Δ |
BPDP-D | ○ | ○ | ○ | ○ | Δ | X | ○ |
Sample | λabs (ε*105 M −1cm −1) (nm) a | Eox (V) b | Ered (V) c | Eg (eV) d | ΔGET (eV) e | Td (°C) f | Tm (°C) g |
---|---|---|---|---|---|---|---|
BP | 253 (0.220), 363 (0.0251) | -- | −1.13 h | -- | −3.36 | 115 i | 49 i |
EMK | 240 (0.1849), 361 (0.5528) | -- | -- | -- | -- | 254 | 97 i |
BPD-D | 292 (0.2722), 378 (0.4492) | -- | −1.08 | -- | −3.41 | 360 | 170 |
BPDM-D | 290 (0.3162), 376 (0.5956) | -- | −1.04 | -- | −3.45 | 369 | 244 |
BPDP-D | 258 (0.3411), 292 (0.3458), 378 (0.5176) | -- | −1.07 | -- | −3.42 | 424 | 209 |
TEA | -- | 0.53 | -- | 5.02 | -- | -- | -- |
Sample | Final Conversion (%) | ΔHt (kJ/mol) b | Hmax (mW/mg) c | Rpmax (s−1) d | Tmax (s) e |
---|---|---|---|---|---|
BP/TEA | 49 | 42 | 47 | 0.93 | 33 |
EMK/TEA | 42 | 36 | 24 | 0.45 | 46 |
BPD-D/TEA | 72 | 62 | 80 | 1.56 | 39 |
BPDM-D/TEA | 56 | 48 | 40 | 0.73 | 38 |
BPDP-D/TEA | 69 | 59 | 68 | 1.33 | 39 |
BPDP-D/TEA f | 85 | 73 | 120 | 2.30 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-L.; Chen, Y.-C. Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators. Polymers 2021, 13, 1801. https://doi.org/10.3390/polym13111801
Huang T-L, Chen Y-C. Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators. Polymers. 2021; 13(11):1801. https://doi.org/10.3390/polym13111801
Chicago/Turabian StyleHuang, Tung-Liang, and Yung-Chung Chen. 2021. "Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators" Polymers 13, no. 11: 1801. https://doi.org/10.3390/polym13111801
APA StyleHuang, T.-L., & Chen, Y.-C. (2021). Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators. Polymers, 13(11), 1801. https://doi.org/10.3390/polym13111801