Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Morphologies
3.2. Axial Crushing Behavior
3.3. Crashworthiness Criteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three Dimensional |
AM | Additive Manufacturing |
CFE | Crash Force Efficiency |
EA | Energy Absorption |
FDM | Fused Deposition Modeling |
MCF | Mean Crash Force |
PCF | Peak Crash Force |
PET-G | Polyethylene terephthalate |
PLA | Polylactic acid |
SEA | Specific Energy Absorption |
References
- Qiao, P.; Yang, M.; Bobaru, F. Impact mechanics and high-energy absorbing materials: Review. J. Aerosp. Eng. 2008, 21, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Stronge, W.J. Impact Mechanics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Pham, T.M.; Chen, W.; Kingston, J.; Hao, H. Impact response and energy absorption of single phase syntactic foam. Compos. Part B Eng. 2018, 150, 226–233. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- He, W.; Liu, J.; Wang, S.; Xie, D. Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos. Struct. 2018, 189, 37–53. [Google Scholar] [CrossRef]
- Novak, N.; Vasenjak, M.; Ren, Z. Auxetic cellular materials: A review. J. Mech. Eng. 2016, 62, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Tasdemirci, A.; Kara, A.; Turan, K.; Sahin, S. Dynamic crushing and energy absorption of sandwich structures with combined geometry shell cores. Thin-Walled Struct. 2015, 91, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Arceneaux, D.J.; Khattab, A. Mechanical properties of 3D printed polycaprolactone honeycomb structure. J. Appl. Polym. Sci. 2018, 135, 46018. [Google Scholar] [CrossRef]
- Kucewicz, M.; Baranowski, P.; Malachowsky, J.; Poplawski, A.; Platek, P. Modelling, and characterization of 3D printed cellular structures. Mater. Des. 2018, 142, 177–189. [Google Scholar] [CrossRef]
- Hosseinabadi, H.G.; Bagheri, R.; Gray, L.A.; Altstadt, V.; Drechsler, K. Plasticity in polymeric honeycombs made by photo-polymerization and nozzle based 3D-printing. Polym. Test. 2017, 63, 163–167. [Google Scholar] [CrossRef]
- Tiwari, G.; Thomas, T.; Khandelwal, R.P. Influence of reinforcement in the honeycomb structures under axial compressive load. Thin-Walled Struct. 2018, 126, 238–245. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- McMills, A.E. 3D Printing Basics for Entertainment Design; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Schirmeister, C.G.; Hees, T.; Lincht, E.H.; Mulhaupt, R. 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 2019, 28, 152–159. [Google Scholar] [CrossRef]
- Bates, S.; Farrow, I.; Trask, R. Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. Mater. Des. 2019, 162, 130–142. [Google Scholar] [CrossRef]
- Yao, T.; Deng, Z.; Zhang, K.; Li, S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos. Part B Eng. 2019, 163, 393–402. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Schantz, T.; Zein, I.; Ng, K.W.; Teoh, S.H.; Tan, K.C. Mechanical properties and cell structural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 2001, 55, 203–216. [Google Scholar] [CrossRef]
- Tanoto, Y.; Anggono, J.; Budiman, W.; Philbert, K. Strength and dimension accuracy in fused deposition modeling: A comparative study on parts making using ABS and PLA polymers. J. Rekayasa Mesin 2020, 11, 69–76. [Google Scholar] [CrossRef]
- Santana, L.; Alves, J.L.; Netto, A.C.S.; Merlini, C. A comparative study between PETG and PLA for 3D Printing through thermal, chemical and mechanical characterization. Matéria 2018, 23. [Google Scholar] [CrossRef]
- El-Farahaty, K.A.; Sadik, A.M.; Hezma, A.M. Study of optical and structure properties of polyester (PET) and copolyester (PETG) fibers by interferometry. Int. J. Polym. Mater. 2007, 56, 715–728. [Google Scholar] [CrossRef]
- Kim, I.; Hong, S.; Park, B.; Choi, H.; Lee, J. Polyphenylene ether/glycol modified polyethylene terephthalate blends and their physical characteristics. J. Macromol. Sci. Part B 2012, 51, 798–806. [Google Scholar] [CrossRef]
- O’Brien, T.P.; McNally, G.M.; Murphy, W.R.; Millar, B.G.; McGinley, R.P. Mechanical and thermal analyses of different lots of film made from thermoformable glycol modified polyethylene terephthalate (PETG). Tech. Pap. Reg. Tech. Conf. Soc. Plast. Eng. 2008, 1, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Latko-Duralek, P.; Dydek, K.; Golonko, E.; Boczkowska, A. Mechanical properties of PETG fibres and their usage in carbon fibres/epoxy composite laminates. Fibres Text. East. Eur. 2018, 26, 61–65. [Google Scholar] [CrossRef]
- Barrios, J.M.; Romero, P.E. Improvement of surface roughness and hydrophobicity in PETG parts manufactured via fused deposition modeling (FDM): An application in 3D printed self-cleaning parts. Materials 2019, 12, 2499. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Kumar, K.N.; Ibrahim, A.J.; Anandu, K.; Gurudhevan, R. Impact of fused deposition process parameter (infill pattern) on the strength of PETG part. Mater. Today Proc. 2020, 27, 1801–1805. [Google Scholar] [CrossRef]
- Szykiedans, K.; Credo, W.; Osinski, D. Selected mechanical properties of PETG 3-D prints. Procedia Eng. 2017, 177, 455–461. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Zhou, H.; Liu, B.; Li, H.; Du, Z.; Zhang, C. Study on the effect of dispersion phase morphology on porous structure of poly(lactic acid)/poly(ethylene terephthalate glycol-modified) blending foams. Polymer 2013, 54, 5839–5851. [Google Scholar] [CrossRef]
- Loh, G.; Sotayo, A.; Pei, E. Development and testing of material extrusion additive manufactured polymer-textile composites. Fash. Text. 2021, 8, 2. [Google Scholar] [CrossRef]
- Johnson, G.A.; French, J.J. Evaluation of infill effect on mechanical properties of consumer 3D printing materials. Adv. Technol. Innov. 2018, 3, 179–184. [Google Scholar]
- Maurya, N.; Vikas, R.; Singh, P. Experimental and computational investigation on mechanical properties of reinforced additive manufactured component. Evergreen 2019, 6, 207–214. [Google Scholar] [CrossRef]
- Durgashyam, K.; Reddy, M.I.; Balakrishna, A.; Satyanarayana, K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method. Mater. Today Proc. 2019, 18, 2052–2059. [Google Scholar] [CrossRef]
- Guessasma, S.; Belhabib, S.; Nouri, H. Printability and tensile performance of 3D printed polyethylene terephthalate glycol using Fused Deposition Modelling. Polymers 2019, 11, 1220. [Google Scholar] [CrossRef] [Green Version]
- Dupaix, R.B.; Boyce, M.C. Anisotropy evaluation of different raster directions, spatial orientations, and fill percentage of 3D printed PETG tensile test. Key Eng. Mater. 2019, 821, 167–173. [Google Scholar] [CrossRef]
- Xia, H.; Lu, J.; Tryggvason, G. A numerical study of the effect of viscoelastic stresses in fused filament fabrication. Comput. Methods Appl. Mech. Eng. 2019, 346, 242–259. [Google Scholar] [CrossRef]
- McIlroy, C.; Olmsted, P. Disentanglement effects on welding behavior of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 2017, 123, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Kalyan, K.; Phull, J.S.; Soni, S.; Singh, H.; Kaur, G. Integration of FDM and vapor smoothing process: Analyzing properties of fabricated ABS replicas. Mater. Today Proc. 2018, 5, 27902–27911. [Google Scholar] [CrossRef]
- Dizon, J.R.; Espera, A.H.; Chen, Q.; Advincula, R. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Chohan, J.S.; Singh, R. Pre and post processing techniques to improve surface characteristics of FDM parts: A state of art review and future applications. Rapid Prototyp. J. 2017, 12, 495–513. [Google Scholar] [CrossRef]
- Sheoran, A.J.; Kumar, H. Fused Deposition Modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Mater. Today Proc. 2020, 21, 1659–1672. [Google Scholar] [CrossRef]
- Guzanova, A.; Draganovska, D.; Brezinova, J. Surface Engineering and Materials in Mechanical Engineering; Trans Tech Publications Ltd.: High Tatras, Slovakia, 2015. [Google Scholar]
- Rodríguez-Panes, A.R.; Claver, J.; Camacho, A.M. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, D.; Seelig, T. Fracture Mechanics: With an Introduction to Micromechanics; Springer: Heidelberg/Berlin, Germany, 2006. [Google Scholar]
- Hamidi, A.; Tadesse, Y. Single step 3D printing of bioinspired structures via metal reinforced thermoplastic and highly stretchable elastomer. Compos. Struct. 2019, 210, 250–261. [Google Scholar] [CrossRef]
- Byberg, K.I.; Gebisa, A.W.; Lemu, H.G. Mechanical properties of ULTEM 9085 material processed by fused deposition modeling. Polym. Test. 2018, 72, 335–347. [Google Scholar] [CrossRef]
- Powell, P.C.; Housz, A.J.I. Engineering with Polymers, 2nd ed.; Stanley Thornes Ltd.: Cheltenham, UK, 1998. [Google Scholar]
- Mamalis, A.G.; Manolakos, D.E.; Demosthenous, G.; Ioannidis, M.B. Crashworthiness of Composite Thin-Walled Structural Components; CRC Press LLC: Boca Raton, FL, USA, 1998. [Google Scholar]
- Silva, F.; Sachse, S.; Njuguna, J. Energy absorption characteristics of nano-composites conical structures. IOP Conf. Ser. Mater. Sci. Eng. 2012, 40, 012010. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.; Cernicchi, A.; Gilchrist, M.; Cardiff, P. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Mater. Des. 2019, 162, 106–118. [Google Scholar] [CrossRef]
- Pehlivan, L.; Baykasoglu, C. An experimental study on the compressive response of CFRP honeycombs with various cell configurations. Compos. Part B Eng. 2019, 162, 653–661. [Google Scholar] [CrossRef]
- Qin, R.; Zhou, J.; Chen, B. Crashworthiness design and multiobjective optimization for hexagon honeycomb structure with functionally graded thickness. Adv. Mater. Sci. Eng. 2019, 2019, 8938696. [Google Scholar] [CrossRef]
- Song, Y.H.; Tane, M.; Nakajima, H. Appearance of a plateau stress region during dynamic compressive deformation of porous carbon steel with directional pores. Scr. Mater. 2011, 64, 797–800. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, S.; Yu, T.X.; Xu, J. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int. J. Impact Eng. 2019, 125, 163–172. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, M.; Yu, T.; Yang, L. Key performance indicators of tubes and foam-filled tubes used as energy absorber. Int. J. Appl. Mech. 2015, 7, 1550060. [Google Scholar] [CrossRef]
- Lu, G.; Yu, T. Energy Absorption of Structures and Materials; CRC Press LLC: Boca Raton, FL, USA, 2003. [Google Scholar]
Material | Characteristics | Extrusion Temp (°C) | Elastic Modulus (GPa) | Refs. |
---|---|---|---|---|
ABS | Strong and durable, good temperature resistance, susceptible to warping. Petroleum-based plastic. | 230–250 | 2.3 | [28,29,30] |
PLA | Biopolymer with biocompatibility, low impact strength, and temperature resistance. | 180–210 | 3.8 | [28,29,30] |
PET-G | Durable, biocompatible, recyclable, tough, high impact and chemical resistance. | 210–245 | 3.0 | [28,29,30] |
Series Code | Orientation | Infill Density (%) |
---|---|---|
HE30 | Edge | 30 |
HE70 | Edge | 70 |
HE100 | Edge | 100 |
HF30 | Flat | 30 |
HF70 | Flat | 70 |
HF100 | Flat | 100 |
HU30 | Upright | 30 |
HU70 | Upright | 70 |
HU100 | Upright | 100 |
Layer thickness | 0.19 mm |
Raster angle | 45° |
Platform temperature | 30° |
Infill pattern | Honeycomb |
Support | Lite and Smart bridges |
Series Code | Collapse Mode |
---|---|
HE30 | II |
HE70 | II |
HE100 | I |
HF30 | II |
HF70 | II |
HF100 | II |
HU30 | III |
HU70 | III |
HU100 | III |
Series Code | PCF [kN] | EA [J] | SEA [kJ/kg] | MCF [kN] | CFE [%] | Densification [%] |
---|---|---|---|---|---|---|
HE100 | 1.58 | 21.80 | 1.16 | 0.87 | 55.41 | 59.11 |
HU30 | 2.97 ± 0.07 | 41.57 ± 2.37 | 2.45 ± 0.14 | 1.78 ± 0.05 | 60.08 ± 0.42 | 55.79 ± 1.22 |
HU70 | 3.10 ± 0.05 | 43.50 ± 1.37 | 2.56 ± 0.08 | 1.88 ± 0.04 | 60.76 ± 0.43 | 55.52 ± 0.40 |
HU100 | 4.57 ± 0.14 | 66.71 ± 1.19 | 3.51 ± 0.06 | 2.95 ± 0.04 | 64.63 ± 1.04 | 54.86 ± 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basurto-Vázquez, O.; Sánchez-Rodríguez, E.P.; McShane, G.J.; Medina, D.I. Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load. Polymers 2021, 13, 1983. https://doi.org/10.3390/polym13121983
Basurto-Vázquez O, Sánchez-Rodríguez EP, McShane GJ, Medina DI. Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load. Polymers. 2021; 13(12):1983. https://doi.org/10.3390/polym13121983
Chicago/Turabian StyleBasurto-Vázquez, Olimpia, Elvia P. Sánchez-Rodríguez, Graham J. McShane, and Dora I. Medina. 2021. "Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load" Polymers 13, no. 12: 1983. https://doi.org/10.3390/polym13121983
APA StyleBasurto-Vázquez, O., Sánchez-Rodríguez, E. P., McShane, G. J., & Medina, D. I. (2021). Load Distribution on PET-G 3D Prints of Honeycomb Cellular Structures under Compression Load. Polymers, 13(12), 1983. https://doi.org/10.3390/polym13121983