A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Reference Polymers
2.3. Artificial Aging and Extraction
2.4. Analytical Methods and Instrumentation
2.4.1. Evolved Gas Analysis–Mass Spectrometry (EGA–MS)
2.4.2. Pyrolysis–Gas Chromatography–Mass Spectrometry (Py–GC–MS)
2.4.3. Size-Exclusion Chromatography (SEC)
3. Results and Discussion
3.1. EGA–MS and Py–GC–MS Analysis of Polymers during Artificial Aging
3.1.1. Polypropylene
3.1.2. Polystyrene (PS)
3.1.3. Polyethylene Terephthalate (PET)
3.1.4. Polyethylene (PE)
3.2. Analysis of Extractable Fraction of Reference Polymers before and after Artificial Aging
3.2.1. Polypropylene
3.2.2. Polystyrene
3.2.3. Polyethylene Terephthalate
3.2.4. Polyethylene
3.3. Analysis of Insoluble Fractions of Reference Polymers before and after Artificial Aging
3.3.1. Polypropylene
3.3.2. Polystyrene
3.3.3. Polyethylene Terephthalate
3.3.4. Polyethylene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Betts, K. Why small plastic particles may pose a big problem in the oceans. Environ. Sci. Technol. 2008, 42, 8995. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Frere, L.; Paul-Pont, I.; Rinnert, E.; Petton, S.; Jaffré, J.; Bihannic, I.; Soudant, P.; Lambert, C.; Huvet, A. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France). Environ. Pollut. 2017, 225, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768. [Google Scholar] [CrossRef]
- Shahul Hamid, F.; Bhatti, M.S.; Anuar, N.; Anuar, N.; Mohan, P.; Periathamby, A. Worldwide distribution and abundance of microplastic: How dire is the situation? Waste Manag. Res. 2018, 36, 873–897. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, K. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total. Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.; Sandblom, O.; MacLeod, M. Identification of Chain Scission Products Released to Water by Plastic Exposed to Ultraviolet Light. Environ. Sci. Technol. Lett. 2018, 5, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Ceccarini, A.; Corti, A.; Erba, F.; Modugno, F.; La Nasa, J.; Bianchi, S.; Castelvetro, V. The Hidden Microplastics: New Insights and Figures from the Thorough Separation and Characterization of Microplastics and of Their Degradation Byproducts in Coastal Sediments. Environ. Sci. Technol. 2018, 52, 5634–5643. [Google Scholar] [CrossRef]
- Bejgarn, S.; MacLeod, M.; Bogdal, C.; Breitholtz, M. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 2015, 132, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Nasa, J.; Lomonaco, T.; Manco, E.; Ceccarini, A.; Fuoco, R.; Corti, A.; Modugno, F.; Castelvetro, V.; Degano, I. Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry. Chemosphere 2021, 270, 128612. [Google Scholar] [CrossRef] [PubMed]
- Schwaferts, C.; Niessner, R.; Elsner, M.; Ivleva, N.P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal. Chem. 2019, 112, 52–65. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends Anal. Chem. 2019, 111, 62–72. [Google Scholar] [CrossRef]
- Dümichen, E.; Eisentraut, P.; Bannick, C.G.; Barthel, A.-K.; Senz, R.; Braun, U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 2017, 174, 572–584. [Google Scholar] [CrossRef]
- David, J.; Weissmannová, H.D.; Steinmetz, Z.; Kabelíková, L.; Demyan, M.S.; Šimečková, J.; Tokarski, D.; Siewert, C.; Schaumann, G.E.; Kučerík, J. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly (ethylene), poly (styrene), poly (vinyl chloride) and poly (ethylene terephthalate) microplastics in a model soil. Chemosphere 2019, 225, 810–819. [Google Scholar] [CrossRef]
- David, J.; Steinmetz, Z.; Kučerík, J.; Schaumann, G.E. Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry. Anal. Chem. 2018, 90, 8793–8799. [Google Scholar] [CrossRef]
- Primpke, S.; Fischer, M.; Lorenz, C.; Gerdts, G.; Scholz-Böttcher, B.M. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Anal. Bioanal. Chem. 2020, 412, 8283–8298. [Google Scholar] [CrossRef]
- Tsuge, S.; Ohtani, H.; Watanabe, C. Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Moldoveanu, S.C. Analytical Pyrolysis of Synthetic Organic Polymers; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- La Nasa, J.; Biale, G.; Fabbri, D.; Modugno, F. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics. J. Anal. Appl. Pyrolysis 2020, 149, 104841. [Google Scholar] [CrossRef]
- Lomonaco, T.; Manco, E.; Corti, A.; La Nasa, J.; Ghimenti, S.; Biagini, D.; di Francesco, F.; Modugno, F.; Ceccarini, A.; Castelvetro, V.; et al. Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollution. J. Hazard. Mater. 2020, 394, 122596. [Google Scholar] [CrossRef] [PubMed]
- Castelvetro, V.; Corti, A.; Bianchi, S.; Ceccarini, A.; Manariti, A.; Vinciguerra, V. Quantification of poly(ethylene terephthalate) micro- and nanoparticle contaminants in marine sediments and other environmental matrices. J. Hazard. Mater. 2020, 385, 121517. [Google Scholar] [CrossRef]
- La Nasa, J.; Biale, G.; Mattonai, M.; Modugno, F. Microwave-assisted solvent extraction and double-shot analytical pyrolysis for the quali-quantitation of plasticizers and microplastics in beach sand samples. J. Hazard. Mater. 2021, 401, 123287. [Google Scholar] [CrossRef]
- La Nasa, J.; Biale, G.; Ferriani, B.; Trevisan, R.; Colombini, M.P.; Modugno, F. Plastics in Heritage Science: Analytical Pyrolysis Techniques Applied to Objects of Design. Molecules 2020, 25, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelvetro, V.; Corti, A.; La Nasa, J.; Modugno, F.; Ceccarini, A.; Giannarelli, S.; Vinciguerra, V.; Bertoldo, M. Polymer Identification and Specific Analysis (PISA) of Microplastic Total Mass in Sediments of the Protected Marine Area of the Meloria Shoals. Polymers 2021, 13, 796. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513. [Google Scholar] [CrossRef] [Green Version]
- Chiellini, E.; Corti, A.; D’Antone, S.; Baciu, R. Oxo-biodegradable carbon backbone polymers—Oxidative degradation of polyethylene under accelerated test conditions. Polym. Degrad. Stab. 2006, 91, 2739–2747. [Google Scholar] [CrossRef]
- Luda, M.P.; Dall’Anese, R. On the microstructure of polypropylenes by pyrolysis GC-MS. Polym. Degrad. Stab. 2014, 110, 35–43. [Google Scholar] [CrossRef]
- Bottino, F.A.; Cinquegrani, A.R.; Di Pasquale, G.; Leonardi, L.; Pollicino, A. Chemical modifications, mechanical properties and surface photo-oxidation of films of polystyrene (PS). Polym. Test. 2004, 23, 405–411. [Google Scholar] [CrossRef]
- Castelvetro, V.; Corti, A.; Biale, G.; Ceccarini, A.; Degano, I.; La Nasa, J.; Lomonaco, T.; Manariti, A.; Manco, E.; Modugno, F.; et al. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
Polypropylene | Degradation Temperature Range (°C) (a) | TD Max (°C) |
---|---|---|
PP-0w | 421–480 | 453 |
PP-1w | 350–484 | 437 |
PP-3w | 350–463 | 424 |
PP-4w | 350–458 | 418 |
No. | tr (min) | Peak Identification | Main Ions (m/z) |
---|---|---|---|
1 | 14.3 | 2,4-dimethyl-1-heptene | 126, 83, 70, 55 |
2 | 14.7 | xylene | 106, 91 |
3 | 14.9 | ethoxytriethylsilane | 131, 103, 73 |
4 | 15.05 | octamethyltrisiloxane | 221, 73 |
5 | 15.1 | butanoic acid, trimethylsilyl ester | 145, 117, 75 |
6 | 16.2 | 2-butenoic acid, tert-butyldimethylsilyl ester | 143, 99, 75, 59 |
7 | 16.9 | 1,2,3-trimethylbenzene | 120, 105 |
8 | 17.6 | 4-pentenoic acid, 2-methyl, trimethylsilyl ester | 186, 171, 157, 117, 73 |
9 | 17.8 | 3-butenoic acid,3-methyl, trimethylsilyl ester | 172, 157, 127, 113, 73, 54 |
10 | 18.5 | methyltris(trimethylsiloxy)silane | 295, 207, 191, 73 |
11 | 18.7 | unknown | 171, 146, 133, 117, 73 |
12 | 18.9 | propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 233, 129, 191, 147, 133, 117, 73 |
13 | 19.1 | acetic acid, [(trimethylsilyl)oxy]-, trimethylsilyl ester | 205, 190, 161, 147, 133, 117, 103 |
14 | 19.2 | unknown | 171, 157, 145, 129, 117, 103, 75 |
15 | 19.3 | 2-propenoic acid, 2-[(trimethylsilyl)oxy]-, trimetylsilyl ester | 217, 147, 131, 73 |
16 | 19.9 | butanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 233, 205, 190, 147, 131, 73 |
17 | 20.1 | pentanoic acid, 4-oxo-, trimethylsilyl ester | 173, 155, 145, 131, 75 |
18 | 20.2 | propanoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 219, 177, 147, 133, 116, 73 |
19 | 20.5 | butanoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 223, 191, 147, 130, 117, 73 |
20 | 21.2 | 3-butenoic acid,3-(trimethylsilyloxy)-,trimethylsilyl ester | 231, 157, 147, 73 |
21 | 22.1 | malic acid, O-(trimethylsilyl)-, bis(trimethylsilyl) ester | 245, 233, 147, 73 |
22 | 22.7 | butanedioic acid, bis(trimethylsilyl) ester | 247, 147, 129, 73 |
23 | 22.9 | butanedioic acid, methyl-, bis(trimethylsilyl) ester | 261, 217, 147, 129, 73 |
No. | tr (min) | Peak Identification | Main Ions (m/z) |
---|---|---|---|
1 | 14.9 | ethylbenzene | 106, 91, 77, 65, 51 |
2 | 15.5 | styrene | 104, 89, 78, 63, 51 |
3 | 16.1 | benzene, (1-methylethyl)- | 120, 105, 91, 77, 51 |
4 | 16.6 | unknown | 175, 146, 132, 115, 102 |
5 | 16.7 | HMDS unknown | 222, 206, 190, 132, 74 |
6 | 17.3 | HMDS unknown | 220, 207, 188, 132, 73 |
7 | 17.4 | cyclotrisiloxane, hexamethyl- | 207, 191, 133, 96 |
8 | 17.9 | cyclotetrasiloxane, octamethyl- | 281, 265, 207, 191, 133, 73 |
9 | 18.1 | benzene, 1-propenyl- | 117, 103, 91, 77, 63, 51 |
10 | 18.2 | benzene, (1-methylene-2-propenyl)- | 130, 115, 102, 91, 77, 63, 51 |
11 | 18.5 | tetrasiloxane, decamethyl- | 295, 207, 191, 73 |
12 | 18.6 | silane, trimethylphenoxy- | 166, 151, 135, 91, 77 |
13 | 18.7 | benzene, (1-methylenepropyl)- | 132, 117, 103, 91, 77, 63, 51 |
14 | 18.8 | propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 191, 147, 133, 117, 73 |
15 | 18.9 | acetophenone | 120, 105, 77, 51 |
16 | 19.1 | acetic acid, [trimethylsilyl)oxy]-, trimethylsilyl ester | 205, 177, 147, 133, 73 |
17 | 20.0 | pentanoic acid, 4-oxo, trimethylsilyl ester | 173, 145, 131, 75 |
18 | 20.1 | 4,6-dioxa-5-aza-2,3,7,8-tetrasilanonane-2,2,3,3,7,7,8,8-octamethyl- | 294, 206, 190, 130, 73 |
19 | 20.2 | propanoic acid, 3-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 219, 177, 147, 133, 116, 73 |
20 | 20.3 | silane, trimethyl(4-methylphenoxy)- | 180, 165, 149, 135, 91 |
21 | 20.9 | cyclopentasiloxane, decamethyl | 355, 267, 251, 187, 73 |
22 | 21.2 | propanedioic acid, bis(trimethylsilyl) ester | 233, 179, 147, 73 |
23 | 21.3 | pentasiloxane, dodecamethyl- | 369, 353, 281, 265, 207, 147, 43 |
24 | 21.6 | unknown | 281, 192, 117, 151, 135, 115, 73 |
25 | 21.7 | 1-phenyl-1-(trimethylsilyloxy)ethylene | 191, 177, 135, 103, 91, 75 |
26 | 21.9 | benzoic acid trimethylsilyl ester | 194, 179, 135, 105, 77, 51 |
27 | 22.2 | 1-dimethylvinylsilyloxy-3-methylbenzene | 192, 117, 165, 151, 135, 91 |
28 | 22.5 | phenylacetic acid, trimethylsilyl ester | 193, 164, 91, 73 |
29 | 22.7 | butanedioic acid, bis(trimethylsilyl) ester | 147, 172, 147, 73 |
30 | 22.9 | butanedioic acid, methyl-, bis(trimethylsilyl) ester | 261, 217, 147, 73 |
31 | 23.4 | hexasiloxane, tetradecamethyl- | 443, 355, 281, 267, 221, 147, 73 |
32 | 24.1 | phenylpropanoic acid, trimethylsilyl ester | 222, 207, 104, 91, 75 |
33 | 25.5 | bibenzyl | 182, 91, 65 |
34 | 25.9 | 1-pentene-2,4-diyldibenzen | 194, 115, 105, 91 |
35 | 26.4 | benzene, 1,1′-(1,2-dimethyl-1,2-ethanediyl)bis- | 210, 105, 91, 77 |
36 | 26.7 | benzoic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 282, 267, 223, 193, 73 |
37 | 27.1 | benzene, 1,1′-(1,3-propanediy)bis- | 196, 117, 105, 92, 77, 65, 51 |
38 | 27.7 | stilbene | 179, 165, 152, 102, 89, 76, 51 |
39 | 27.8 | 3-butene-1,3-diyldibenzene (styrene dimer) | 208, 130, 115, 104, 91, 77, 65 |
40 | 28.0 | unknown | 194, 165, 152, 115, 91, 77, 51 |
41 | 28.4 | 1H-indene, 2-phenyl- | 192, 165, 115, 91 |
42 | 28.5 | 1,4-benzenedicarboxylic acid, bis(trimethylsilyl) ester | 310, 295, 251, 221, 140, 103, 73 |
43 | 28.7 | naphthalene, 1,2-dihydro-4-phenyl- | 206, 191, 128, 115, 91 |
44 | 28.8 | anthracene | 178, 152, 89, 76 |
45 | 28.9 | 1,3-butadiene, 1,4-diphenyl- | 206, 191, 178, 165, 128, 115, 91 |
46 | 29.4 | naphthalene, 1-phenyl- | 204, 101, 89 |
47 | 29.6 | 2,5-diphenyl-1,5-hexadiene | 234, 143, 130, 115, 104, 91, 77 |
48 | 29.9 | pentadecanoic acid, trimethylsilyl ester | 297, 145, 129, 117, 73 |
49 | 30.4 | fluoranthene, 1,2,3,10b-tetrahydro- | 206, 190, 178, 165, 152, 89, 76 |
50 | 30.5 | naphthalene, 2-phenyl | 204, 101, 89 |
51 | 30.9 | hexadecanoic acid, trimethylsilyl ester | 328, 313, 145, 129, 117, 73 |
52 | 32.6 | octadecanoic acid, trimethylsilyl ester | 341, 145, 129, 117, 73 |
53 | 34.6 | 5-hexene-1,3,5-triyltribenzene (styrene trimer) | 312, 207, 194, 117, 91, 77 |
No. | tr (min) | Peak Identification | Main Ions (m/z) |
---|---|---|---|
1 | 15.3 | styrene | 104, 89, 78, 63, 51 |
2 | 16.4 | unknown | 175, 146, 132, 115, 73 |
3 | 16.7 | HMDS unknown | 222, 206, 190, 132, 74 |
4 | 17.2 | HMDS unknown | 220, 204, 132, 73 |
5 | 17.3 | HMDS unknown | 220, 207, 188, 132, 73 |
6 | 17.4 | unknown | 223, 207, 191, 147, 73 |
7 | 17.9 | cyclotetrasiloxane, octamethyl | 281, 265, 249, 193, 73 |
8 | 18.5 | tetrasiloxane, decamethyl | 295, 207, 191, 73 |
9 | 18.6 | silane, trimethylphenoxy- | 166, 151, 135, 91, 77 |
10 | 18.9 | acetophenone | 120, 105, 77, 51 |
11 | 19.1 | acetic acid, [trimethylsilyl)oxy]-, trimethylsilyl ester | 205, 177, 147, 133, 73 |
12 | 20.1 | 2,2,3,3,7,7,8,8-octamethyl-4,6-dioxa-5-aza-2,3,7,8-tetrasilanonane | 294, 206, 190, 73 |
13 | 21.5 | unknown | 293, 205, 146, 130, 73 |
14 | 21.8 | benzoic acid trimethylsilyl ester | 194, 179, 135, 105, 77, 51 |
15 | 22.7 | butanedioic acid, bis(trimethylsilyl) ester | 247, 172, 147, 73 |
16 | 23.4 | benzoic acid, 2-methyl-, trimethylsilyl ester | 208, 193, 149, 119, 91, 65 |
17 | 23.7 | naphthalene, 2-ethenyl- | 154, 128, 76 |
18 | 24.4 | unknown | 442, 354, 266, 206, 146, 130, 73 |
19 | 24.5 | decanoic acid, trimethylsilyl ester | 229, 145, 129, 117, 73 |
20 | 24.9 | 2-propenoic acid, 3-phenyl-,trimethylsilyl ester | 220, 205, 161, 131, 103, 75 |
21 | 25.2 | unknown | 275, 147, 117, 73 |
22 | 25.6 | vinyl benzoate | 105, 77, 51 |
23 | 25.9 | benzoic acid, 3-[(trimethylsilyl)oxy]-, trimethylisilyl ester | 282, 267, 223, 193, 73 |
24 | 26.0 | divinyl terephthalate | 175, 147, 132, 104, 76 |
25 | 26.7 | unknown | 236, 221, 177, 147, 91 |
26 | 26.9 | 1,4-benzenedicarboxylic acid, methyl trimethylsilyl ester | 252, 237, 221, 163, 135, 103 |
27 | 27.3 | unknown | 249, 221, 205, 170, 103 |
28 | 27.7 | 1,4-benzenedicarboxylic acid, ethyl trimethylsilyl ester | 251, 221, 207, 177, 149, 103, 76 |
29 | 28.1 | 1,3-benzenedicarboxylic acid, bis(trimethylsilyl) ester | 295, 279, 221, 205, 140, 103, 73 |
30 | 28.5 | 1,4-benzenedicarboxylic acid, bis(trimethylsilyl) ester | 310, 295, 251, 221, 140, 103, 73 |
31 | 29.7 | unknown | 265, 221, 147, 103, 73 |
32 | 30.2 | unknown | 265, 249, 175, 149, 104 |
33 | 30.9 | unknown | 313, 295, 251, 221, 149, 117, 73 |
34 | 31.3 | unknown | 339, 221, 140, 103, 73 |
35 | 32.6 | 2,2-bis[(4-trimethylsilyloxy)phenyl]propane | 372, 357, 207, 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biale, G.; La Nasa, J.; Mattonai, M.; Corti, A.; Vinciguerra, V.; Castelvetro, V.; Modugno, F. A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics. Polymers 2021, 13, 1997. https://doi.org/10.3390/polym13121997
Biale G, La Nasa J, Mattonai M, Corti A, Vinciguerra V, Castelvetro V, Modugno F. A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics. Polymers. 2021; 13(12):1997. https://doi.org/10.3390/polym13121997
Chicago/Turabian StyleBiale, Greta, Jacopo La Nasa, Marco Mattonai, Andrea Corti, Virginia Vinciguerra, Valter Castelvetro, and Francesca Modugno. 2021. "A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics" Polymers 13, no. 12: 1997. https://doi.org/10.3390/polym13121997
APA StyleBiale, G., La Nasa, J., Mattonai, M., Corti, A., Vinciguerra, V., Castelvetro, V., & Modugno, F. (2021). A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics. Polymers, 13(12), 1997. https://doi.org/10.3390/polym13121997