Synergetic Effect of Different Carrier Dynamics in Pm6:Y6:ITIC-M Ternary Cascade Energy Level System
Abstract
:1. Introduction
2. Materials and Methods
- Film 1: PM6: Acceptor (Y6:ITIC-M = 1:0) = 1:1.2
- Film 2: PM6: Acceptor (Y6:ITIC-M = 0.9:0.1) = 1:1.2
- Film 3: PM6: Acceptor (Y6:ITIC-M = 0.8:0.2) = 1:1.2
- Film 4: PM6: Acceptor (Y6:ITIC-M = 0.6:0.4) = 1:1.2
- Film 5: PM6: Acceptor (Y6:ITIC-M = 0:1) = 1:1.2
- Film 6: PM6:Y6:ITIC-M = 1:1.2:0.1
- Film 7: PM6:Y6:ITIC-M = 1:1.2:0.2
- Film 8: PM6:Y6:ITIC-M = 1:1.2:0.4
- Film 9: PM6:Y6:ITIC-M = 1:1.2:0.6
- Film 10: PM6:Y6:ITIC-M = 1:1.2: 1
- Device 1–10: ITO/PEDOT: PSS/film1–10/PDINO/Ag
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duan, L.; Elumalai, N.K.; Zhang, Y.; Uddin, A. Progress in non-fullerene acceptor based organic solar cells. Sol. Energy Mater. Sol. Cells 2019, 193, 22–65. [Google Scholar] [CrossRef]
- Yan, C.; Rlow, S.B.; Wang, Z.; Yan, H.; Jen, A.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.; Cui, C.; Li, Y. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in stability of organic solar cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 2019, 4, 229–242. [Google Scholar] [CrossRef]
- Sun, R.; Guo, J.; Sun, C.; Wang, T.; Luo, Z.; Zhang, Z.; Jiao, X.; Tang, W.; Yang, C.; Li, Y.; et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384–395. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhang, S.; Yao, H.; Xu, Y.; Wang, J.; Zu, Y.; Hou, J. High-efficiency nonfullerene organic solar cells enabled by 1000 nm thick active layers with a low trap-state density. ACS Appl. Mater. Interfaces 2020, 12, 18777–18784. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, J.; Zhao, X.; Du, Z.; Yang, R.; Tang, J. Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale 2021, 13, 2181–2208. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater. 2018, 30, 1705706. [Google Scholar] [CrossRef]
- Cheng, P.; Zhan, X. Versatile third components for efficient and stable organic solar cells. Mater. Horiz. 2015, 2, 462–485. [Google Scholar] [CrossRef]
- Li, H.; Lu, K.; Wei, Z. Polymer/small molecule/fullerene based ternary solar cells. Adv. Energy Mater. 2017, 7, 1602540. [Google Scholar] [CrossRef]
- Cheng, X.; Matthew, W.; Ping, D.; Yi, H.; Zhang, X.; Arafat, M.; Sun, K.; Baishakhi, U.M.; Faiazul, H.; Ashraf, U. Ternary blend organic solar cells with a non-fullerene acceptor as a third component to synergistically improve the efficiency. Org. Electron. 2018, 62, 261–268. [Google Scholar]
- Yang, L.; Yan, L.; You, W. Organic solar cells beyond one pair of donor–acceptor: Ternary blends and more. J. Phys. Chem. Lett. 2013, 4, 1802–1810. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhang, Y.; Deng, R.; Yi, H.; Uddin, A. Balance between energy transfer and exciton separation in ternary organic solar cells with two conjugated polymer donors. ACS Appl. Energy Mater. 2020, 3, 5792–5803. [Google Scholar] [CrossRef]
- Chang, L.; Duan, L.; Sheng, M.; Yuan, J.; Yi, H.; Zou, Y.; Uddin, A. Optimising non-patterned moo3/ag/moo3 anode for high-performance semi-transparent organic solar cells towards window applications. Nanomaterials 2020, 10, 1759. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Ma, Q.; Jia, Z.; Meng, L.; Zhang, J.; Zhang, H.; Huang, W.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z.; et al. Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78, 105272. [Google Scholar] [CrossRef]
- Xu, X.; Bi, Z.; Ma, W.; Wang, Z.; Choy, W.C.; Wu, W.; Zhang, G.; Li, Y.; Peng, Q. Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv. Mater. 2017, 29, 1704271. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Li, H.; Hou, J.; Chen, H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645. [Google Scholar] [CrossRef]
- Wu, L.; Xie, L.; Tian, H.; Peng, R.; Huang, J.; Fanady, B.; Song, W.; Tan, S.; Bi, W.; Ge, Z. Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor. Sci. Bull. 2019, 64, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, H.; Lv, J.; Chen, Y.; Zhang, W.; Yu, G.; Li, F. Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment. Nanoscale 2015, 7, 15945–15952. [Google Scholar] [CrossRef]
- Campoy-Quiles, M.; Ferenczi, T.A.M.; Agostinelli, T.; Etchegoin, P.G.; Kim, Y.; Anthopoulos, T.; Stavrinou, P.; Bradley, D.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:Fullerene solar cell blends. Nat. Mater. 2008, 7, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; He, Z.; Wu, H.; Cao, Y. Influence of the acceptor crystallinity on the open-circuit voltage in ptb7-th: Itic organic solar cells. J. Mater. Chem. C 2019, 7, 14861–14866. [Google Scholar] [CrossRef]
- Ullbrich, S.; Benduhn, J.; Jia, X.; Nikolis, V.C.; Tvingstedt, K.; Piersimoni, F.; Roland, S.; Liu, Y.; Wu, J.; Fischer, A.; et al. Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses. Nat. Mater. 2019, 18, 459–464. [Google Scholar] [CrossRef]
- Karuthedath, S.; Gorenflot, J.; Firdaus, Y.; Chaturvedi, N.; De Castro, C.S.P.; Harrison, G.T.; Khan, J.I.; Markina, A.; Balawi, A.H.; Pena, T.A.D.; et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. 2021, 20, 378–384. [Google Scholar] [CrossRef]
- Cowan, S.R.; Roy, A.; Heeger, A.J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207. [Google Scholar] [CrossRef] [Green Version]
- Azimi, H.; Senes, A.; Scharber, M.C.; Hingerl, K.; Brabec, C.J. Charge transport and recombination in low-bandgap bulk heterojunction solar cell using bis-adduct fullerene. Adv. Energy Mater. 2011, 1, 1162–1168. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Wang, L.; Huai, Z.; Fan, R.; Huang, S.; Fu, G.; Yang, S. Simultaneous enhancement of short-circuit current density, open circuit voltage and fill factor in ternary organic solar cells based on ptb7-th:It-m:Pc71bm. Sol. Energy Mater. Sol. Cells 2018, 182, 45–51. [Google Scholar] [CrossRef]
- Malliaras, G.G.; Salem, J.R.; Brock, P.J.; Scott, C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 1998, 58, R13411. [Google Scholar] [CrossRef]
- Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8972–8982. [Google Scholar] [CrossRef]
- Cha, H.; Chung, D.S.; Bae, S.Y.; Lee, M.-J.; An, T.K.; Hwang, J.; Kim, K.H.; Kim, Y.-H.; Choi, D.H.; Park, C.E. Complementary absorbing star-shaped small molecules for the preparation of ternary cascade energy structures in organic photovoltaic cells. Adv. Funct. Mater. 2013, 23, 1556–1565. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Ren, X.; Zhu, X.; Yang, Z.; Li, C.; Liu, S. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv. Mater. 2016, 28, 5206–5213. [Google Scholar] [CrossRef] [PubMed]
- Grancini, G.; Maiuri, M.; Fazzi, D.; Petrozza, A.; Egelhaaf, H.; Brida, D.; Cerullo, G.; Lanzani, G. Hot exciton dissociation in polymer solar cells. Nat. Mater. 2013, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Vandewal, K.; Yost, S.R.; Bahlke, M.E.; Goris, L.; Baldo, M.A.; Manca, J.V.; Voorhis, T.V. Charge transfer state versus hot exciton dissociation in polymer–Fullerene blended solar cells. J. Am. Chem. Soc. 2010, 132, 11878–11880. [Google Scholar] [CrossRef] [PubMed]
Device | Voc (V) | Jsc (mA cm−2) | FF (%) | PCE (%) | Rs (Ω cm2) | Rsh (Ω cm2) |
---|---|---|---|---|---|---|
1 | 0.83 | 24.80 | 68.30 | 14.03 | 4.62 | 964.16 |
2 | 0.86 | 22.99 | 67.34 | 13.34 | 5.01 | 812.24 |
3 | 0.88 | 22.68 | 65.21 | 12.96 | 5.73 | 724.28 |
4 | 0.91 | 20.78 | 64.13 | 12.16 | 6.18 | 644.32 |
5 | 1.02 | 13.27 | 51.26 | 6.96 | 15.95 | 571.16 |
Device | Voc (V) | Jsc (mA cm−2) | FF (%) | PCE (%) | Rs (Ω cm2) | Rsh (Ω cm2) |
---|---|---|---|---|---|---|
1 | 0.83 | 24.80 | 68.30 | 14.03 | 4.62 | 964.16 |
6 | 0.85 | 23.76 | 65.86 | 13.27 | 6.91 | 1332.92 |
7 | 0.86 | 22.48 | 58.79 | 11.40 | 8.25 | 619.36 |
8 | 0.89 | 20.36 | 53.88 | 9.77 | 8.54 | 421.92 |
9 | 0.91 | 18.32 | 47.39 | 7.93 | 13.04 | 330.72 |
10 | 0.91 | 18.74 | 45.62 | 7.79 | 13.21 | 217.64 |
Devices | μh (cm2 V−1 s−1) | μe (cm2 V−1 s−1) | μh/μe |
---|---|---|---|
1 | 9.62 × 10−4 | 8.98 × 10−4 | 1.07 |
2 | 4.50 × 10−4 | 2.01 × 10−4 | 2.38 |
3 | 3.57 × 10−4 | 1.82 × 10−4 | 1.96 |
4 | 1.27 × 10−4 | 1.08 × 10−4 | 1.17 |
5 | 8.38 × 10−6 | 1.42 × 10−5 | 0.59 |
6 | 9.56 × 10−4 | 4.10 × 10−4 | 2.33 |
7 | 9.35 × 10−4 | 3.71 × 10−4 | 2.52 |
8 | 9.18 × 10−4 | 3.17 × 10−4 | 2.89 |
9 | 7.21 × 10−4 | 2.80 × 10−4 | 2.58 |
10 | 3.76 × 10−4 | 9.67 × 10−5 | 3.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Song, D.; Xu, Z.; Qiao, B.; Zhao, S.; Wageh, S.; Al-Ghamdi, A.A.; Huo, X. Synergetic Effect of Different Carrier Dynamics in Pm6:Y6:ITIC-M Ternary Cascade Energy Level System. Polymers 2021, 13, 2398. https://doi.org/10.3390/polym13152398
Li Z, Song D, Xu Z, Qiao B, Zhao S, Wageh S, Al-Ghamdi AA, Huo X. Synergetic Effect of Different Carrier Dynamics in Pm6:Y6:ITIC-M Ternary Cascade Energy Level System. Polymers. 2021; 13(15):2398. https://doi.org/10.3390/polym13152398
Chicago/Turabian StyleLi, Zicha, Dandan Song, Zheng Xu, Bo Qiao, Suling Zhao, S. Wageh, Ahmed A Al-Ghamdi, and Xiaomin Huo. 2021. "Synergetic Effect of Different Carrier Dynamics in Pm6:Y6:ITIC-M Ternary Cascade Energy Level System" Polymers 13, no. 15: 2398. https://doi.org/10.3390/polym13152398
APA StyleLi, Z., Song, D., Xu, Z., Qiao, B., Zhao, S., Wageh, S., Al-Ghamdi, A. A., & Huo, X. (2021). Synergetic Effect of Different Carrier Dynamics in Pm6:Y6:ITIC-M Ternary Cascade Energy Level System. Polymers, 13(15), 2398. https://doi.org/10.3390/polym13152398